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Preamble

The continuous and reliable availability of electric energy at any place and in a sufficient
amount is the backbone of any advanced economy. A highly meshed, stable electric power grid
which offers sufficient reserves is necessary to grant the high degree of reliability and security
of supply which the customers nowadays are used to. The grid needs to be resilient to cope the
various needs of customers at any time.

Economic boom phases and crises, demographic changes, technological breakthroughs and last
but not least divergent political interests have led to a continuous change in the utilization of
the electric power system in the recent past. Grid extension efforts take much longer than the
described changes in grid utilization, so grid reserves are decreasing. This is becoming a more
and more severe threat to system security. That is why knowledge of the grid state is of essential
importance for grid operators.

In this script, the fundamental algorithms of steady-state and quasi-steady-state power system
analysis are presented. It contains the essential approaches of modelling assets and network
topology. Furthermore, the most relevant grid state identification algorithms are explained. The
algorithms are suitable for the healthy, balanced system as well as for faulty, balanced and
unbalanced conditions.

Nowadays, commercial grid calculation software is used to do power system analysis.
Nevertheless, a power system engineer should be able to understand the fundamental
mathematics behind power system behavior. This will help him to use and parameterize the
software and makes it easier to understand the results and derive solutions.

At this point it is necessary to mention, that the script does not replace the lecture course and
vice versa. Instead, the script and the lecture supplement each other. In the script, the focus is
laid on the mathematical details and algorithms, while, in the lecture, the focus is on
understanding the concepts

While reading this script, I hope, the reader will feel the same joy I did, when I was a student
and got introduced to power system analysis.

Martin Wolter
August 2020







1 Modal components

The general composition of a three-phase electric power system is given in Fig. 1. Voltages and
currents cannot be calculated separately for each phase due to the coupling of the phases.
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Fig. 1: general composition of a three-phase electric power system in natural coordinates

The coupling of the phases results in a dense impedance matrix Z in the linear equation system.
Encircling of the three meshes given by the respective phase, the neutral point impedance and
ground results in

!a ;aa ;ab ;ac la L—Jqsa QN
Uy =] Zoa Ziv Zoe || Lo [+]YUgp [+]YUn (1.1)
L—Jc ;ca ;cb ;cc lc L_Jq ¢ L_JN
or in abbreviated diction
u=Zi+u,+uy (1.2)

Usually, a symmetric and balanced three phase system is assumed. That means, that all of the
phase impedances and all of the couplings are identical and the source voltages have equal

magnitudes and a phase angle difference of 120° each. Usually, phase “a” is considered
reference phase and therefore its phase angle is set to 0° to simplify calculations.

Furthermore, assumption of a balanced system results in

;aa =;bb =;cc =;s = Rs +jxs

: (1.3)
Zab = Zbc = ;ac = ;ba = ;cb = ;ca = ;m = Rm+JXm
with the self-impedance Z_ and the mutual impedance Z . Using the rotating operator
P2
a=e? (1.4)

the source voltages can be expressed as follows
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Llq,a = qu
Ugp=2"U, (1.5)
L_Jq,c = g Qq

So, in a symmetric three-phase system, the impedance matrix is diagonal-cyclic symmetric.
Integration of symmetry into eq. (1.1) results in

U, |2, Z, Z,|[L 1 1
Uy [=|Z, Z, Z,||L, [+U &’ [+Uy[1 (1.6)
U.| |Z, Z, Z.|L a 1

Using modal components instead of the natural coordinates a, b, ¢ the equation system can be
further simplified and potentially decoupled. Transformation of the natural variables g into

their modal form g shall be a linear, reversible and unique mapping which results in the

following transformation equations

7
9,=Tn g
Expression of U and i by their modal equivalent in eq. (1.6) results in

Eq. (1.8) can be solved for U, due to the reversibility of the transformation process and results
in

. -1 -1
In+T, Ug+T, Uy

(1.9)

+ gq,m + gN,m

The described procedure is well-known in math science and called reference frame
transformation. It aims at the development of a diagonalized system matrix Z _, with the
eigenvalues of Z on its main diagonal. Most of the modal transformations result in such a
decoupled system. Depending on the problem formulation and the field of application, different
types of modal transformation are applied. The transformation matrices are developed in the
following chapters.

1.1 General development of transformation matrices

The transformation matrix T contains the eigenvectors that correspond to the respective
eigenvalues. They form the modal reference frame and therefore need to be orthogonal.

tll 1-:12 tl3
I =k 121 tzz t23 :k[h Iz 13] (1~10)

t31 t32 1_:33

This means, t,, t, and t; must be linearly independent. Otherwise, the inverse of T cannot
be calculated. K is an arbitrary factor other than zero to scale the result.
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The eigenvalues of Z are obtained by solving the characteristic polygon.

;s_& Zg ;g
det(Z-AE)=det|| 2, Z,-4 Z, ||=(Z,-2)-3(Z,-2)Z.+2Z}=0 (1.11)
;g ;g ;s_i

Solving eq. (1.11) results in three eigenvalues, whereof one eigenvalue is double.

41 = ;s - Zg
1,=2,-1, (1.12)
Ay=L,+27Z,
As described above, for each eigenvalue an eigenvector needs to be found. For A, this results
in
Zg ;g ;g tll 0
(Z-4E)V =2, Z, Z,||ty]|=|0 (1.13)
;g ;g ;g I31 0

It is obvious, that there is no unique solution. In fact, every vector will be suitable, if their
coefficients sum up to zero.

b+t +1;, =0 (1.14)

The same solution is obtained for 4,

t,+t, +t;, =0 (1.15)
Insertion of A, results in

-2 1 1]lty] |0
(;—413 E)B =L, 1 2 1 ||ty|=(0 (1.16)

In this case, too, a unique solution cannot be found. Besides an infinite number of possible
solutions, e.g. eigenvectors whose coefficients are all equal, are suitable.

L3 =ty =15 (1.17)

So, any arbitrary but invertible matrix that complies with eq. (1.14), (1.15) and (1.17) can be
used as transformation matrix. In eq. (1.14) and eq. (1.15) two parameters can be chosen, in
eq. (1.17) only one. Still, the eigenvectors of 4, and A4, must stay linearly independent to keep
the transformation matrix invertible.
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1.2 Calculation of powers in modal components

The overall power of the electric energy system is calculated by the sum of the powers of each
component in the system. In natural coordinates this is

S=U, L,+U, Ii+U 17=u"i" (1.18)

and in modal components

-k

Sp=Upi (1.19)

m

Keeping the power constant before and after the transformation between component systems
results in

S=5 (1.20)

—m

Expression of the natural component system as a function of modal variables results in
!

(T Up) (Towin) =ul TE T 0% =ul i (1.21)

This is only possible, if
TnT,=E (1.22)

and can be realized by choosing a suitable factor k in eq. (1.10). In this case, the transformation
matrix is invariant to powers. It is important to mention, that most transformations are not
invariant to powers.

1.3 Most common modal components

In practice, only a couple of modal component systems are used, because only they offer the
aspired advantages for their specific field of application. Steady-state power system analysis is
usually based on symmetrical components, while e.g. power electronics engineering often uses
Clarke-Transformation for modelling and control purposes. Drives and generators — especially
synchronous machines — are best described using Park-Transformation.

1.3.1 Symmetrical components

Symmetrical components were introduced in 1918 by Charles Legeyt Fortescue. He proved,
that any random unsymmetrical n-phase system can be expressed as a sum of n symmetrical
separate components. Its transformation matrix

1 1 1
T.=kla® a 1 (1.23)
2
a a 1

shows, that the eigenvector of A, describes a symmetrical system, whose sequence 1 — g2 —a
is in line with the natural phase sequence. It is therefore called “positive sequence system”. The
eigenvector of A, describes a system, whose sequence 1—a —>a’ is counter-rotating. It is
therefore called ,,negative sequence system®. The eigenvector of A, shows no rotation. It is
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therefore called ,,zero sequence system®. Due to its special behavior it is no longer indexed 3
but gets the index 0 instead. If k is chosen to be one, this results in

1 1 1 1 a a’
| .2 -1 _1 2 _1 « \T
Tk =|a a 1 ISK_E 1 a a _E(ISK) (1.24)
a a1 1 1 1

Symmetrical component transformation shall now be applied to eq. (1.9). The source voltages
are transformed into

1 a a’|[1 U,
1
Uy =3|1 @ @ |la®|U =) 0 (1.25)
1 1 1]la 0
and the neutral point voltage
I a a’|[ 0
Uin=3|1 2 2 [1]Uy=| 0 (1.26)
1 1 1|1 Uy
Finally, the result is
U | |4 L Y 0
U, |= Z, L+ 0|+l O (1.27)
Uy Zo |l Lo 0] [Uy

Eq. (1.27) shows the special advantage of symmetrical components. In a non-faulty, balanced
state, negative and zero sequence systems are passive and do not need to be calculated. This is
due to the negative sequence system does not contain sources and U y is only other than zero,
ifthe sumof 1,, I, and | is other than zero. So, in a non-faulty state, it is sufficient to only
consider the positive sequence system. Only in the case of faults or unbalanced operation points,
consideration of negative and zero sequence systems is necessary.

Another advantage of symmetrical components is, that they are invariant to the reference phase.
In a balanced operation point negative and zero sequence systems are passive, resulting in

c,1[1 1 1g7 [ &

~a =~

G, |=|a> a 1] 0 |=|a’G, (1.28)

a
G a a° 1|0 aG,

—C

This means, currents and voltages of the positive sequence system correspond to the currents
and voltages of the reference phase “a”. Interpretation of symmetrical components is therefore
very easy. Nevertheless, it is important to keep in mind, that
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12> alf[1 1 1173 0 0
TL Tih=l1 a a’|la a® 1]|=|0 3 0|=3E (1.29)
11 142 4 1] 10 0 3

That means, electric power in natural coordinates is three times higher compared to the
symmetrical components. Thus, using the given transformation matrix they are not invariant to
power. To obtain a power invariant transformation system, it is necessary to set the factor
k= \/g . Unfortunately, this would lead to currents and voltages that are \/g times higher
compared to the real system. Thus, invariance to the reference phase would be lost. That is why
in practice, usually the reference phase invariant transformation is used.

Eq. (1.27) shows that in a non-faulty state, positive, negative and zero sequence system, are
decoupled and can be calculated independently.

Z I,
— =
U,
Z, I
U N 3 ;N L_J()

Fig. 2: graphical interpretation of symmetrical components

The neutral point impedance is only considered in the zero-sequence system. It is multiplied
with the factor 3 due to

Uy=2Zy lN=ZN(la+lb+l_c)=ZN 31, (1.30)
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1.3.2 Diagonal components (Clarke-Transformation)

Diagonal components or a,f,0 -components have been developed by Edith Clarke. With the
factor k =1 he following transformation matrices are obtained

10 1 5 1
T, = —% g 1 TD—IZ% 0 3 -3 (1.31)
11 1
LB
L2 2

The coefficients can be easily explained by putting the natural coordinate system into a
complex-valued plane described by a - und B - vectors.

iB
A

Fig. 3: complex-valued reference frame of diagonal components

The first column of T, corresponds to the real part of the first column of T and the second
column of T, corresponds to the imaginary part of the second column of T o .

Clarke-Transformation shall now be applied to eq. (1.9). With the source voltages
2 -1 -1 1 U

C

=q =qa
1 .
gq’D = g 0 \/g _\/g @2 Qq =] Qq = Qq,ﬁ (1'32)
1 1 1 a 0 0
And the neutral point voltages
2 -1 -1 0
gN’Dzé 0 B —BI[1{Uuy=| 0 (1.33)
1 1 1 1 Uy
This results in the following equation system
u,| [Z, 1 Uia 0
U, |= Zy lg |[+{Ugp |+] O (1.34)
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The impedance matrix is identical to the symmetrical components. Nevertheless, two
significant differences are obvious:
e The transformation matrices are real-valued.
e A single-component system description is not possible anymore. Generally, sources are
active in the a - and the p - component.

As already known from the symmetrical components, the transformation leads to three
decoupled systems that can be analyzed independently. The neutral point impedance is again
only considered in the zeros sequence system.

u., (D U,

(D u,

(@
z
W
N
z
|

Fig. 4: diagonal components

1.3.3 Other transformation methods

Symmetrical components and diagonal components have in common, that their transformation
matrices have constant coefficients. This is not always advantageous, e.g. to model the rotor of
a synchronous generator, it is more useful to apply a rotating transformation. This leads to a
time-variant transformation matrix but also to constant modal values. This dq0-transformation
has been developed by Robert H. Park.

Finally, symmetrical components are only valid to describe steady-state, base frequency
models. To model multi-frequency, dynamic performances, space-phasor transformations are
needed, which again can be based on steady or rotating reference frames. In fact, it can be
shown, that symmetrical components are a special case of the general space-phasor
transformation.




1.4 Summary of transformation matrices

1.4 Summary of transformation matrices

Table 1: invariant to reference phase
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2 Modelling of equipment

To model processes and calculate states of electric power systems, a systematic description of
grid topology and the physical behavior of all the assets is necessary. Different approaches are
available, especially graph theory and multipole theory. For the purpose of steady-state and
quasi steady-state grid analysis, the latter offers a couple of advantages, namely:

e Equipment matrices are usually smaller.

e Input and output variables of the equipment equation systems are values that can be
directly measured in real grids. Using graph theory, these original terminal values of the
equipment need to be calculated first by superposing branch values.

e Itis not necessary to (arbitrarily) define directions of branches. Therefore, all solutions
are unique.

It is assumed, that all assets are built in a symmetric way. So, it is sufficient to only consider
the positive sequence system. Symmetry can be achieved by appropriate construction of the
asset or is suitably reached by twisting phases in case of overhead lines.

Multipole theory considers each single piece of equipment a black box with a specific amount
of connection points. At these terminals currents and voltages can be directly measured. By
doing so, measurement possibilities are modelled very realistic, for the terminal values e.g. at
both ends of a cable are exactly the values that can be measured in physical grids, too, whereas
voltages and currents inside of the cable e.g. capacitive shunt currents, cannot be directly
measured during system operation and need to be calculated. As a general convention, loads
are counted positive. Therefore, currents always point into the asset at each terminal and
voltages are pointing from phase to ground. For the purpose of steady-state grid analysis, most
of the equipment can be described using a linear model due to there is a linear dependency of
voltages and currents. Therefore, the physical behavior of the asset is described using a linear
equation system. Its size depends on the number of terminals.

In the following, nodal and terminal values need to be separated. Therefore, the index K is used
to describe nodal values and index T is used to describe terminal values.

2.1 Dipoles

The general black box representation of a dipole is given in Fig. 5.

Fig. 5: general model of a dipole

The dipole is characterized by one pair of terminals, whereof one terminal is grounded and
therefore not explicitly indexed. The terminal voltage U , can be found between ground and
the other terminal which is indexed A.
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Due to the linear dependency between terminal voltage and current, the behavior of the diploe
can be expressed by a linear equation.

Ta=Y aU,+1 (2.1)

The general equivalent circuit of the dipole can be found in Fig. 6.

L, A

— O

I, l@ Y, U,

Fig. 6: general equivalent circuit of a dipole

Dipoles are:
e Synchronous and asynchronous machines
e Grid equivalents
e Loads
e Shunt compensators (capacitor banks and reactors)

In case of a synchronous machine

Y=o (22)

and

(2.3)

2.2 Quadrupoles

The general black box representation of a quadrupole is given in Fig. 7.

L Ly
o —— -0

|
>
=
o

Fig. 7: general representation of a quadrupole

The Quadrupole has two independent terminals (A and B), which results in a 2" order linear
equation system with the equipment admittance matrix Y 1 gy, .

] [t toli]
Ig Yea Ygs|lUs (2.4)
Irpm = Yreu  Ursw

Quadrupoles represent lines (overhead lines and cables) as well as two-winding transformers.
These assets do not have internal sources, so modelling of a current source is unnecessary. In
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the following chapters the coefficients of the admittance matrix of lines and transformers are
derived.

2.2.1 Lines

The general equivalent circuit diagram of a line with concentrated parameters is given in Fig.
8. Due to its form it is often called n-equivalent-circuit.

Fig. 8: equivalent circuit diagram of a line

The admittances are calculated as follows

<
>
I

XBZ%«;uwc)
(2.5)

| <
—_

M7 R+ X

Application of 1% Kirchhoff*s law at the left and right branching points results in

L] [Ya+Ya Y [Ua 06
1y ~Yu o Yp+Yy ]| Up .

So, the coefficients of the admittance matrix of a line are found. Y , , Y 5 and Y, can be easily
derived from the line length | and the resistance loads per unit length.

R=r'l
X =xl 2.7)
C=c'l
G=g'l

2.2.2 Two-winding transformer

The general equivalent circuit diagram of a two-winding transformer is given in Fig. 9. Due to
its form it is often called T-equivalent circuit. Without loss of generality it is assumed, that the
winding at terminal B is regulated and the elements of the equivalent circuit of winding B are
related to the rated voltage of winding A. Back-transformation of the related voltages and
currents is done using an ideal transformer with the transformation ratio ¢ which is also used
to model regulation, tap changing and phase shifting.
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B

Ly

|
w

Fig. 9: equivalent circuit diagram of a two-winding transformer

The admittances are calculated as follows

YA :;.
Ra +3X4
' 1
Y, =— — 2.8
Ly =R Xy (2.8)
ol
RFe th
1, and I_;3 can be expressed as a function of U , , L_J;3 and U, .
Ta=Ya (QA _QM)
(2.9)

!

1 =Y5 (Vs -y )

Additional application of the 1% Kirchhoff’s law at the branching point in the equivalent circuit
results in

—Ly =l +Y Uy =0 (2.10)

Eq. (2.9) and eq. (2.10) form a linear equation system

L] [Ya 0 Y, U,
Ig|=| 0 Y Y Us (2.11)
O) a5 Ya+vpey, Y

Eq. (2.11) still does not have the aspired 2x2 form. With U, the equation system still contains
an inner voltage of the transformer which needs to be eliminated. Therefore, the last equation
is solved for U, , so U,, can be expressed as a function of U , and U}, .

Uy =————1Y, X’B}{ﬂ (2.12)

Ya +X;3 +Y Up

Insertion of eq. (2.12) in the two upper equations of eq. (2.11) results in

{LA} L [aeen) v FA} .

g | Y +Yp+Yy Y !;3 X;B (XA +!M) =
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It is aspired to calculate with the actual voltages and currents which means, the related voltages
and currents need to be eliminated. Therefore, the transformation ratio needs to be integrated
into the equipment admittance matrix. This is done by

Upy=rU, (2.14)
with
U j LSy
Zzﬂpe& j (2.15)
Ur,T,B

p represents the change of voltage magnitude evoked by transformer tapping. It is related to
the terminal A nominal voltage. « is the respective change in phase and K is a constant phase
shift which is given by the transformer vector group. E.g. k=5 at an Yd5 transformer. An ideal
transformer has no losses, so

Sp=3Sp (2.16)
Therefore
, 1
Iy=—14 (2.17)
z

Integration of eq. (2.14) and eq. (2.17) in eq. (2.13) results in

| L (Ger) s i
I e o) e
B YA s Y| Y, Y [ YR (YY) [FR

So, the coefficients of the admittance matrix of a two-winding transformer are found. Y , and
!;3 are obtained from a short-circuit test

P
R, =R} _1 P (2.19)
231,
1 UrT A PV k 1 Ur T,A
Xy=Xg==, || U —7—=—""—1| - - r—U = (2.20)
2 [ \/g Ir,T,AJ {3 Ir2,T,A 2 \/g Ir,T,A
Y\ is obtained from an open-loop test
U2
Ry, ~ —22 (2.21)
P
V.0
U
X, ~—h (2.22)
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2.3 Sextupoles

The general black box representation of a sextupole is given in Fig. 10.

U, Uy Ue

Y

Fig. 10: general equivalent circuit diagram of a sextupole

It is used to model three-winding transformers. Its physical behavior is described by a third
order linear equation system.

Ia Yar Yas Yac ||Ua
Ig |=|Yea Yss Ygc||Us (2.23)
Ie Yea Yo Yec lYe

The coefficients of the equipment admittance matrix are calculated the exact same way as
shown for the two-winding transformer.

2.4 Octopoles

The general black box representation of an octopole is given in Fig. 11.

C | D
=C —-D
o— | =1 O
A, 1, B
o——| | --—o0
Uec U, U, U,
Y Y

Fig. 11: general equivalent circuit diagram of an octopole

It is used to model parallel systems of lines, e.g. overhead line systems that share the same
poles. Although the phases are twisted to reach symmetry, there might be an inductive or
capacitive coupling between these systems. The physical behavior of such parallel systems can
be described by a forth order linear equation system.

lA XAA XAB g XAC XAD liA
Y| _|Yea Yo iYsc Yo ||YUs (224)
I_C XCA !CB 5 XCC XCD QC

lD XDA !DB ;XDC XDD QD
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The 2x2 submatrices on the main diagonal describe the behavior of the respective system as a
quadrupole and the submatrices on the secondary diagonal the mutual coupling between these
systems.

In the same way overhead-lines carrying three or more systems can be modeled as 12-poles,
16-poles and so on. Usually, the mutual perturbation is neglected and all systems of the
overhead-line are modeled as quadrupoles.
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3 Grid equation systems

To efficiently perform power system analysis, a suitable equation system is needed, which
allows to easily formulate the problem and model the underlying mechanisms. Therefore, a
system state vector is aspired which has toe following properties:

e unambiguous and consistent
e lowest possible number of state variables
e simple deduction of other information

Possible system state vectors and mesh currents and nodal voltages. Only the latter fully meet
the above requirements.

In the following, different approaches to setup the grid equation systems are introduced.

3.1 Multipole theory

In chapter 2 the physical behavior of different types of assets is described. Up to now, the pieces
of equipment are not connected to each other. If all equipment equation systems are put
together, this results into a single linear equation system which has a block-diagonal form.

Las Y ai Uai
Laa Yaa ! i Yaa.
[p\pes j Yanas Y ABa+ ; U pait
I_B,a+l = : !BA,OH-] !BB,aH ! L—JB,aH
lA,a+ﬁ XAA,aJrﬂ XAB,DHrﬂ liA,oﬁﬂ’
Yoarg | | i Yeaas Yesap | [|Ysas
(3.1

In eq. (3.1) the composition is exemplarily given for « dipoles and S quadrupoles. Integration
of sextupoles and octopoles is done analogously. The order of the assets or their terminals is
not important. Nevertheless, the aspired block-diagonal form can only be achieved, if terminals
belonging to the same asset are grouped together.

For the demonstration grid given in Fig. 12 the resulting single-line diagram is shown in Fig.
13 which also gives the enumeration of nodes and terminals.

O+

Fig. 12: demonstration grid
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sy v, @, @

I, l@ Y, U U,

Fig. 13: single-line diagram with node and terminal enumeration
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Finally, this results in the full terminal admittance matrix Y 1 ¢

(Y Yo
Yo Ypo

= : : 2
!T,full E _!M YB +!M E (3 )

It can also be composed of a terminal admittance matrix containing only dipoles Y ; p, and a
terminal admittance matrix containing all other remaining equipment Y

Y _ !T,rem
—T,full —

T,rem *

33
XT,DJ G3)

For the purpose of bus-oriented descriptions of the system state, usually only Y 1 ., is needed.
Therefore, in the following, it is shorter written as Y ;. At each node, the terminal currents of
the adjacent dipoles are summed up to a nodal current | . This simplifies the calculation and
it is not necessary to calculate with fictitious internal source currents.

3.1.1 Description of topology

The topology of a grid is described by logically connecting terminals to nodes. This is done
using the nodal-terminal-incidence-matrix Ky . If a terminal is logically connected to a node,
the respective coefficient of the matrix is set to ,,1“. All other elements of this column must
then be ,,0“, because a terminal can and must only be connected to exactly one node. So the
column sums of the nodal-terminal-incidence-matrix must be exactly ,,1* while the row sums
represent the degree of intermeshing of a node.

The topology of the demonstration grid given in Fig. 12 is described by Ky gy

1 0i0 01110
Kgran=|0 1i1 01010 (3.4)
0 0:0 1:0:1

Like the equipment admittance matrix it can also be composed of a Ky pp containing the
dipoles and Kyr ., containing the connectivity of all other remaining assets.

KKT,full = |:KKT,rem KKT,DP:I (3.5)




3.1 Multipole theory 21

For the purpose of bus-oriented descriptions of the system state, usually only Ky ., is needed.
Therefore, in the following, it is shorter written as K.

Switching equipment on or off is a change in its physical behavior and therefore must not be
modeled by setting or deleting ones in Ky .. It must be modeled by changing the respective
coefficients of Y ;. On the other hand, switching a line from one busbar to another is in fact a
change of the logical assignment of the terminal to a node. Therefore, this must be modelled by
moving the ,,1*“ in the respective column of Ky, from the old to the new node. The physical
behavior of the line does not change, so Y | stays constant.

3.1.2 Description of the system state

The multipole approach uses the admittance form to describe the physical behavior of the
equipment. It is therefore a nodal based method. Thus, the nodal voltages U, form the system
state vector. For example, the terminal voltages U, can easily be expressed.

Uy = Kgp Uy (3.6)

Furthermore, the physical behavior of the assets is known and can be described with a single
linear equation system according to eq. (3.1).

It =Yr Up (.7)
Finally, 1* Kirchhoff*s law, says, that the sum of currents at each node has to be zero.
I +Kgpip =0 (3.8)

In eq. (3.8) the nodal current vector i, is introduced. It summarizes all the dipole currents that
are connected to the respective nodes.

I = KKT,DP 1T,DP (3.9)
Insertion of eq. (3.6) into eq. (3.7) results in
ir=Yr Kgr Ug (3.10)
Insertion of eq. (3.10) into eq. (3.9) and solving for the nodal currents leads to
i =—Kgr Yo Kgp Ug (3.11)

Eq. (3.11) is again written in admittance form, which was already used to describe the physical
behavior of the equipment. Nevertheless, all terminal voltages and currents have been replaced
by nodal voltages and currents and the description of the physical behavior and topological
information are merged into one single equation system. Introduction of the bus admittance
matrix Y g

Yk =—Kgr Y1 Kgr (3.12)
leads to a further simplification
e =Yyg Uk (3.13)

If dipoles were not expressed as nodal currents, then I, would only contain the inner source
currents of the dipoles and the dipole admittances would be part of Y .
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Y kx has the following properties:

e quadratic
e sparse

e symmetric, if there are no phase shifting transformers in the grid

e singular, if there are no shunt elements in the grid. Even with shunt elements, the
determinant is close to zero.

3.1.3 Deduced information

As described above, nodal voltages are particularly suitable to describe the system state, due to
all other values can be easily derived. Table 3 gives an overview of a couple the most needed

information of interest.

Table 3: derived information

description

formula

terminal voltages

T
Ur = Kgr Ug

nodal currents

I =Ygk Uk

terminal currents

iT :XT

T
Ur =Y 1 Kgr Ug

nodal powers

Sk =3Ug !*K :3QK(XKK !K)*

terminal powers

sr=3Uy !; :3QT(1T HT)*

grid losses

Sy= _Z§K = Z§T

3.2 Graph theory

Using graph theory, equipment is not modeled as a single piece of asset as described in
chapter 2. Instead, the equipment is decomposed into several branches, each containing only a
single admittance and possible a parallel current source.

This results in the branch equation

qu{E} Y, | U,

Fig. 14: general presentation of a branch

1,=Y,U,+l, (3.14)

Similar to the multipole approach all branches are enumerated and their equations are joined
into a single, decoupled equation system.
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|_21—| izl —‘ Qzl—‘ I_ql

Pol= N I (3.15)
lZn J XZn L_JZn J I—qn .

iZ = !Z HZ + iq

For the demonstration grid given in Fig. 12 this results in the following equivalent circuit
diagram

® Y, @ Yy ®

J S | I i
—_— —_—
U U

l@

|
LI

1<

(=N

|

S

|c

[

)

| <

>
]

Fig. 15: equivalent circuit diagram in graph theory

The arbitrary chosen direction of the branch currents depicts the direction of the entire branch.
In multipole theory, this step is unnecessary, due to the load counting system all terminal
currents automatically point into the asset at every terminal. In doing so, a potential source of
error is avoided.

According to the branch enumeration the following branch admittance matrix results

Yo

Yy

Y, Y |
Y 21 = { e } = S (3.16)

Similar to the multipole theory, it can be divided into the branches of the dipoles and all other
branches. Again, at each node, the currents of the adjacent dipoles are summed up to nodal
currents.

3.2.1 Topology description

Grid topology is described by logically connecting branches to their adjacent nodes under
consideration of the branch direction. This is done using the node-branch-incidence matrix Ky,
. If a branch is connected to a node but points away from it, a “1” is written at the respective
position in Ky, . If a branch is connected to a node and points towards it, a “~1” is written at
the respective position. In doing so, the ground is neglected.

For the demonstration grid given in Fig. 12 the full topological matrix is

1 0 0 0il1 0
Kz =[ Kz | Kizpp |[=[-1 1 1 010 0 (3.17)
0 -1 0 1:0 1
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An initial error proof of K, is impossible due to the different signs of the coefficients.
Nevertheless — similar to the multipole approach — switching should not be modeled by
removing ones from the matrix. As switching is a change in the physical behavior of the branch,
this should again be modeled by changing and maybe the source current the admittance of the
respective branch.

3.2.2 Description of the system state

The derivation of the grid equation systems is similar to the multipole approach. Due to the
admittance form of the branch description, graph theory also is a nodal based approach. The
system state vector therefore again consists of the nodal voltages U, . The can be used to simply
calculate the branch voltages

u, =Ky, Ug (3.18)
Also, modelling of the physical behavior of the branches is done analogously.
i;=Y,u, (3.19)

The branches considered in eq. (3.19) do not contain any sources, due to these are typically
only present in dipoles.

Finally, using Kirchhoff’s first law, again nodal currents are introduced which sum up to zero
together with the adjacent branch currents.

I +Kyz 1,=0 (3.20)
where the nodal currents can be expressed by the dipole currents, as described above
I = KKZ,DP iZ,DP (3.21)
Combining eq. (3.19) and eq. (3.20) results in
i, =Y, KgzUg (3.22)
Insertion of eq. (3.22) in eq. (3.20) and solving for the nodal current leads to
i =Ky, Y, Kgy Uy (3.23)
and to the already well-known eq. (3.13) with the same bus admittance matrix
Yk =Ky, Y, Kgz (3.24)

Both approaches lead to identical solutions. Nevertheless, the multipole method is superior due
to bypassing any arbitrariness which results from the directed graph. Furthermore, terminal
values (e.g. currents and powers at both ends of a cable) exist in the real world and are actually
measurable while branch values are mostly fictitious. An additional calculation step is needed
to infer from the branch values to measurable values.




3.3 Direct arrangement of the bus admittance matrix 25

3.3 Direct arrangement of the bus admittance matrix

Besides the calculation according to eq. (3.12) Y  can be directly built manually e.g. for the
calculation of small grids.

e Coefficient y. j represents the admittance between the nodes i and j. If there is no direct
connection between i and |, y, . is zero.
e The elements on the main diagonal y, . are calculated by building the negative sum of

line i and subtracting the shunt elements at node i.

The bus admittance matrix of the demonstration grid shown in Fig. 12 is given below

Y Yo 0
Yk =] Yo —(Yr+Yy+Y,) Y (3.25)
0 Ym ~(Yn+Yg)

The same result is obtained by solving eq. (3.12).

Yi —Yg 100
1 000
Y Yy 010
Yeg =m0 110 Y, +Y y 010
00 0 1 —A M M
Yy Yp+Yy 0 0 1 (3.26)
_YT XT 0
=l Yr (Yo +Yy+Y,) L&Y
0 \ (Yu+Y5)
or eq. (3.24)
Y, 1 -1 0
1 0 00
\a 0 1 -1
Yae=m b 110 Y 01 0
—A
0 -1 0 1
Y ]lO 0 1 (3.27)
_YT XT 0
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4 Power flow calculation

Power flow calculation is — as well as the state estimation approach — a method of grid state
identification. That means, its task is to infer on the grid state, namely to calculate nodal
voltages, based on a set of given input variables. The general procedure of grid state
identification is given in Fig. 16.

grid data
measurands Y
pseudo-measurands o )
Set poinis - grid state Uk -

g s r identification

Fig. 16: general procedure of grid state identification

The available methods of grid state identification differ in their algorithms and the available or
used set of input parameters. Therefore, they differ in their fields of application as well and are
either used for grid planning or grid operation.

The power flow calculation infers on nodal voltages exclusively based on given nodal active
and reactive powers as well as some possibly given reference nodal voltages. It is mostly used
for offline grid analysis (e.g. grid planning) and is the basis for contingency analyses during
system operation.

To obtain information on the grid state, the power flow approach needs to solve a quadratic
equation system. The size of the equation system grows with the number of nodes in the grid.
Usually, the problem cannot be solved analytically, thus numerical approaches to approximate
the solution are applied. For this purpose, fixed-point and tangential approaches are available.
Due to their better convergence, the latter are superior, nevertheless, fixed-point approaches
offer several advantages, too.

4.1 Node types and voltage dependency of loads

Each node can be assigned four different values: active and reactive nodal power as well as the
nodal voltage separated into either real and imaginary part or magnitude and angle. Depending
on the available information, different node types are identified.

Table 4: summary of node types

node type known values calculated values amount
load nodes P, Q U,o >90 %
Generator nodes P, U Q,0 <10 %
slack node U, o P, Q 1

Most of the nodes are load nodes, where active and reactive powers are given. Besides that,
there are some generator nodes at which active powers and a reference voltage are given. This
is in line with the behavior of big power plants that supply active power according to their
schedule and offer voltage control. Active and reactive power balancing is granted by a so called
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slack node which additionally defines a reference voltage angle. This is necessary, due to power
flows on the lines are not defined by the absolute value of the nodal voltage angles but instead
by the differences of voltage angles at neighboring nodes.

Theoretically, a fourth node type is thinkable, where Q and o are given and U and P need to be
calculated. There is no physical equivalent to this node type which is why it is usually not used.
Nevertheless, it can be a useful tool e.g. for distributed slack calculation, for power flow
optimization problems or if reference values for voltage and angle are intended to be given at
different locations. Exactly on node must provide a reference angle to make the equation system
solvable. If the system does not have any shunt elements, then at least one voltage reference is
also necessary.

Active and reactive powers at load nodes may depend on the voltage magnitude. Their
characteristic can be expressed by an exponential function.

U p
U q
Q=Q (U_oj (4.2)

In Fig. 17 three different special cases are shown:

e D, g=0: active and reactive power are constant and do not depend on the voltage
magnitude (e.g. if it is a measured value or the load is power controlled)

e P, q=1:active and reactive currents are constant (e.g. a current controlled load)

e D, q=2:active and reactive powers are proportional to the square of the voltage, i.e. the
admittance of the load is constant

In practice, the values of p and q are between 1 and 2.
1.3

1.2 1

L.1¢

P. QO inp.u.

0.9

0.8 : : :
0.9 0.95 1 1.05 1.1

Uinp.u.

Fig. 17: voltage dependency of active and reactive powers
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4.2 Gauss-Seidel iteration

The Gauss-Seidel iteration is a fixed-point approach. It is mainly based on alternatingly solve
the power equation

. 1 -1 *
i =5(UK s« (4.3)
and the current equation
Yk Uk =lg (4.4)

until the result does not change any more.

The slack voltage U | is given and therefore already known. It can be removed from the solution
vector. Hence, the current equation system is separated into the slack equation and the

remaining equations.
Y SS Y ST U S I S
=T = (4.5)
!rs !1‘1‘ gr !r

The lower part of eq. (4.5) is solved for the remaining voltage vector U,
u =Y, (i -, Uy) (4.6)

Thereby, i, is the remaining current vector of i, without the current at the slack node.

|
Iy = {:S} (4.7)

The voltage vector is obtained iteratively. In each iteration step v a new remaining current
vector is calculated based on the voltage solution of the last iteration step

-1

i 1 *
!r,v - g(_r,v—l §r,v—1) (48)
Using these new currents, the voltage vector is updated.
gr,v = !: (ir,v _!rs Lis) (49)

In eq. (4.9) generator nodes are not considered. That means, the voltage U
node g differs most likely from the reference value U ¢ .
needs to be corrected. This is done by further decomposing the (remaining) equation system
from eq. (4.5) into generator and load nodes

g at the generator

Therefore, the entire vector U, ,

[Y

H
—15 |

!gs gigg !gl 'J'S _ ig
ils : llg ill ¢ il

irr] === i

(4.10)
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Assuming that the newly calculated voltage angle of the generator node is a better
approximation than the last one, only the magnitude of the voltage is set back to the reference.

i 4{u

TR 4.11)

=g,y = =g.ref

Changing the voltage magnitudes at the generator nodes has an impact on the voltages of at
least all the surrounding load nodes |. They can be calculated by the lower equation system of
eq. (4.10).

gl,v :Xﬁl (il,v _xlg,v gg,v _ils,v _s) (4 12)

Additionally, the reactive power output of the generator node needs to be modified based on
the corrected generator and load voltages.

U

qg,v :3Im ug,v [!gs !gg !g]:' 2Zgv (413)
gl,v

c

The resulting vectors of nodal voltages and powers can now be used again in eq. (4.8) to
calculate the next iteration step. The powers of the load nodes depend on p and q. If both p and
q are zero, S, is constant.

(4.14)

Gi
Q = Q . U r,v—l,i
r,v,i 0,i Un’i

The iteration process is repeated until the maximum voltage difference between two iteration
steps is lower than a predefined threshold ¢ .

max (

u u

v T Erv-

)<g (4.15)

For the first iteration step, nominal voltages of the nodes can be used as initial guess U, . This
assumption is called a flat-start. A better initial guess can be achieved if the loads are expressed
as equivalent admittances

Y= —%’i (4.16)
7 3 UK,n,i

and integrated on the main diagonal of Y

XKK,L =Yk —YL (4.17)

Using the estimated generator currents

i =5 (Uhs Ske) (4.18)
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an initial guess U, can be obtained which already includes the effects of phase shifting
transformers as well as bulk load and generation. This can help to reduce the number of needed
iterations.

Up =Yk ik (4.19)

After the iteration has converged, the slack current has to be calculated using the slack line in
eq. (4.5). Finally, the voltage and current vectors need to be reassembled

ls :Xss Qs +!sr Y, (420)
Now, the slack power can be calculated
S, =3U, I (4.21)

The flow chart of the Gauss-Seidel iteration is given in Fig. 18.

Initial guess

Y

Calculation of
nodal currents

Y

Y

Calculation of
nodal voltages

Y

Correction of generator
and load voltages

Y

Correction of
nodal powers

Calculation of
slack powers

Fig. 18: flow chart of the Gauss-Seidel iteration

The most important properties of the Gauss-Seidel iteration are:

e Large radius of convergence, that means, even if the initial guess is bad, the approach
is still able to find a proper solution

e Easy to implement

e The system matrix Y . is constant. That means it is sufficient to define and invert it
once prior to the iteration which saves computation time.

e Low convergence speed, which means a lot of iterations are needed to find a proper
solution.
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e The number of needed iterations depends strongly on the grid size and increases with
the number of nodes.
e Implementation of generator nodes is laborious.

Especially in large grids, the Gauss-Seidel-method often fails to converge within an acceptable
amount of time. That is why nowadays it is usually not used anymore. Instead, the superior
Newton-Raphson-approach is applied.

4.3 Newton-Raphson-approach

In contrast to the Gauss-Seidel-iteration, the Newton-Raphson-approach is a tangential method
to find zeros of a non-linear function f (x). Therefore, the function is linearized at an initial
guess X, and the aspired zero position is assumed to be the zero position X, of the tangent.
The so found solution X, is a better solution than X, and therefore used as new guess for the
zero position of f (X) which needs to be linearized at the new solution again until no further
improvement can be seen. For a one-dimensional function, the procedure is shown in Fig. 19.

100 T . . .

80
60
40

x)

20

0

_20 L 1 1 1
0 2 4 6 8 10

Fig. 19: iteration step of a tangential zero search

For the purpose of power flow calculation, the non-linear function is the power equation which
has to be reformulated as a zero search. Therefore, nodal powers that are calculated as a function
of nodal voltages

§K,calc =3 QK (XK_K Ug )* (422)

are supposed to correspond to the actual (given) nodal powers Sy .. .

!

§K,calc :§K,act (423)

So, the power flow calculation can be defined as the zero search of the difference function of
the calculated and actual nodal powers.

A§K = §K,calc _§K,act =0 (424)

By doing so, it is necessary to consider that Sy, probably shows a voltage dependent

characteristic and needs to be updated in each iteration step (see Fig. 17) along with the
improvement of the voltage vector.
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Due to the k complex-valued nodal voltages consist of two independent values (magnitude and
phase or real and imaginary part), 2 k equations are needed to uniquely solve the problem.
Therefore, eq. (4.24) is separated into active and reactive power.

[ApK}: ; Re{Us (Ve U’ _{DK,M}

* (4.25)
Ady Im{L_JK (XKK QK) }

qK,act

The linearization of eq. (4.25) needs to be done in each iteration step v by building a Taylor-
series expansion.

F(x)= (%) + -2

AX (4.26)
X,

14

AX, i1s the difference vector, which needs to be added to X, to get a better guess of the zero
position.

X, =X, +AX, (4.27)

Application of the Taylor-series expansion to the power flow equation results in

Asy = f(x) (4.28)
apK,calc
0 ox
|: :| ~ pK,calc (Xv—l) + v—1 AXV _|: pK,actj| (429)
O qK,calc ( XV—I ) 8qK7calc qK,act
X\,
Reformulation results in
apK,calc
ox’
v—1 AXV _ { pK,act :| _ pK,calc (Xv—l ) (430)
aqK,calc qK,act qK,calc (Xv—l )
X,

Or in abbreviated diction with the Jacobian J and the power differences As

J, AX, =—As,_, (4.31)

The Jacobean depends on the chosen reference frame and consists of four submatrices, which

g N 4.32
=M L (4.32)

4.3.1 Newton-Raphson in Cartesian coordinates

are further described in the following.

In Cartesian coordinates X consists of the real and imaginary part of the nodal voltages

[ {eie]
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with the bus admittance matrix
Yk =G+jB (4.34)

The real and imaginary part of the nodal currents can be calculated. To calculate nodal powers,
the complex-conjugate of the nodal currents are needed which is why the imaginary part is

iK,r _ G -B uK,r (4 35)
—iki| =B G| U, .
So, the nodal powers result in

pK,calc ~3 UK,r -U K.i |: G _Bj| uK,r
qK,calc u K.i u Kr -B -G uK,i

already multiplied by -1.

(Ug, G+Uy; B)ug, +(-Uy, B+Uy; G)uy; (4.36)
) { (Ug; G-Uy, B)ug, —(Uy,; B+Uy, G)ug; ]
To linearize eq. (4.36), four auxiliary matrices are built
H, =Ug, G +UK,i B
H,=-Ug, B+Ug; G
(4.37)

H; = diag (G uy, — B uy;)
H, = diag(B uy, +G uy;)
To include the dependency of the (given) nodal active and reactive powers on the voltage

magnitudes, the diagonal matrices of the auxiliary vectors hs, h,, h, and hg have to be
considered as well. Their coefficients are calculated as follows

h = aPK,alct,i - n. ) UK,r,i
S, aUK,r,i i Kact,i UK,i
OPg et Ugii
i = Sl = Pi P act —
OUg i Uy,
” ’ (4.38)
o aQK,act,i =q Q ) UK,r,l
7, aUK,r,i I <K,act,i UK,i
aQK,act,i u K,i,i
ki = Uy, =0 Qg acti Uy,
This now results in the Jacobian
0Pk Pk
auTr auTi H+H,-H H,+H,-H
J=| =3[ e 6} (4.39)
Odx  OQg H,-H,-H;, H;-H, —Hg

Oug, Ol

Thus, in Cartesian coordinates, eq. (4.31) has the following form
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_hll hlk ?”11 nlk_]_AULr—l _Apl—‘
hey - Ry imy o ;g || AU AP,
SR e . | ot B 3 (4.40)
My o My by Ly | AU AQ, |
M o oy by g [ AU _AQkJ
At the slack node, the voltage does not change in any iteration step. This means
AU, =0
’ (4.41)
AUS,i :O

Eq. (4.41) can be inserted into eq. (4.40). Therefore, the active and reactive power difference
equations are removed from the original equation system and replaced by the above constraints.

hyo b O Ay ey oy e om0y e g || AU AR
hey o D 00 By B e ineay om0 Ny R || AUgy, AP,
0 « 0 1 0 -« 0 10 - 0 0 0 - 0| au, 0
hs+1,1 bx+1,x71 0 7x+1,x+1 o hx+l,k i nx+1,1 B nxﬂ,xfl nx+1,x+1 T ns+1,k AUSH,r APs+1
Mo P O P B S v P O Mg v B || AU || AR
my oy 0 ey e Ly e L 0 e AU, AQ,
msfl,l mxfl,xfl nlel,ﬁl o nlel,k 1 lel,l B lel,xfl 0 ,xfl,ﬁl o Jsfl,k AU s—1,i A(gs—l
0o - 0 0 o0 e 0 70 - 0 1 0 0 AU 0
Moy 0 Mooy O mgg g o mey Loy o Lo 00 Lo 0 Lo || AU AQq,
LMo My 0 my e my Ly e L 00 by b | AU | [ AQ
(4.42)

Setting the remaining elements of the two slack columns to zero has no effect on the solution
of the equation system, due to AU and AUy; are zero due to the constraints. Modification of
these elements is actually not necessary, but making the Jacobian as sparse as possible may
speed up the calculation process and might therefore be advantageous.

In Cartesian form, generator nodes need to be implemented into the equation system in the same
way as described for the Gauss-Seidel iteration, which means after the update vector is
calculated, it is necessary to reset the voltage magnitude to the reference value and recalculate
the reactive power output of the generator. For this reason, usually polar coordinates are used
to calculate the power flow. Nevertheless, Cartesian coordinates still provide some useful
advantages:

e Simple calculation of the Jacobian.
e The Jacobian is based on gradients of quadratic instead of trigonometric functions.
e Convergence radius is marginally larger.
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4.3.2 Newton-Raphson in polar coordinates

In polar coordinates the state vector X consists of the phase angle and the magnitude of the nodal

voltages
o
X = [ K} (4.43)
Ug
Using
U, =U, & (4.44)

and the coefficients Y; ; of the bus admittance matrix

Y, =Y el (4.45)

Lij = Tij

Nodal power can be calculated as follows

Pkcale =3 Re{L_JK (XKK Uy )*}

i,calc

P cale Uy, U, cos(—ay )+ +U YU, c08(8 = 6, —ay, )+ + U YU, cos(6) — 8 —ayy ) ]
P =3 UY, U cos(8, =8 —atjy )+ + U Y0, cos(—a, )+ +U Y Uy cos (8 — 6 — )

| Pecae | U YU, cos(8y =8 = ey )+ +U,YiUj cos (8 = —atq )+ + U, YUy cos(—aty )

(4.46)

Ok catle =3 Im{QK (!KK Ug )*}

Qe | | UY,Uysin(-ay,)+-+U YU, sin(8, -6, -, )+ +U Y, Uy sin (8, — 6 —ay ) |

moi

Qicae [=3] UYjU;sin(6 -6 — o) +--+U YU, sin(-a, )+ +UY,Ugsin (8 — 5 —ay )

(4.47)
Linearization of eq. (4.46) and eq. (4.47) results in
P P
00y  Oug H N
J= - (4.48)
00x 00k M L
5T AT
00y Ouy

Using the diagonal matrices Py . and Qg . obtained from the calculated nodal powers in
eq. (4.46) and eq. (4.47), the auxiliary matrix
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S=3Uy (Yxx Ux)

i(—o i(01—a1p—0 j(01—0 19
U1 Y11 U‘1 eJ( 11) U1 le U2 ?J( 17412 2) Ul Ylk Uk eJ( 1~211 k) (4.49)
— 3 . . . .
U, Y, U, ej(5k*akr51) U, Y, U, ej(5k*ak2*52) U, Yy U, ej(*akk)
and the diagonal matrices P,y .. und Qi .. of the derivation of the voltage magnitude
dependency of the nodal active and reactive powers
ap calc,i -
K’—l’l = pi PK,calc,i UK}i
oUy ;
| (4.50)
aqK,cach _ q Q U —1_
aUK,i i K,calc,i Y K,i
the submatrices of the Jacobian can be built
H = Im{§} - QK,calc
N = (Re{g} + PK,calc) Ulzl - Pp,K,calc (4 5 1)
M =—Re{S} + Py cur '
L= (Im {g} + QK,calc) Ulzl - Qq,K,calc
In polar coordinates eq. (4.31) has the following form
_hll by ;nll nlk_rA5l_ —API_
h, - h, n - n Ao. AP,
S U S0 . . | . S [l 4 (4.52)
My omy by -y | AG, AQ
My o my by b (AU [AQy
At the slack node, voltage magnitude and phase angle do not change
A5, =0
(4.53)
AU, =0

Similar to the Cartesian coordinates, these constraints are implemented into the equation system
by removing the slack lines and replacing them by the constraints. At the generator nodes, only
the voltage magnitude is constant. That means, only in the lower half of the equation system
the lines that correspond to a generator node are removed and replaced by the constraint

AU, =0 (4.54)

So, the decisive advantage that makes polar coordinates superior to the other approaches is the
extremely simply way of implementing generator nodes into the equation system.

In eq. (4.50) and eq. (4.51) all summands building the submatrices N and L are multiplied by
Ulzl from the right. To save some computational effort this multiplication can be avoided, if
the voltage magnitudes in the solution vector are related to the voltages of the previous iteration
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step. In this case, calculating the improved guess according to eq. (4.27) requires an additional
multiplication of the voltage magnitude changes with U .

4.3.3 [Initial guess

Other than the Gauss-Seidel iteration, convergence of the Newton-Raphson-approach strongly
depends on the initial guess. If there are no phase-shifting transformers in the grid, usually the
flat-start will lead to a good solution again. In other cases, more suitable initial guesses can be
found by one of the following methods:

If there are phase-shifting transformers in the grid which do not drive a circular flow, that means
there are no parallel branches to the transformer, a suitable initial guess can be found by solving
the current equation system for the unloaded grid with all shunt elements deactivated.

11,1 o Zl,s—l Zl,s 1Ll,s+1 1il,k Ll1 0
!s—l,l o Xs—l,s—] Zs—l,s Xs—l,s+1 o !s—l,k QH 0
is,l R S | Xx,s Zs,s+1 Xs,k Qs = ls (455)
!s+1,1 o xx+1,s—1 xs+l,s Xs+1,s+1 Xm,k L_Js+1 0
L !k,l o Xk,x—l xk,s xk,s+l o Xk,k L L_Jk 1 L 0 i

In eq. (4.55) all voltages except U are unknown and all currents except | are known (set to
zero). The needed voltages can be obtained by solving eq. (4.6). The resulting voltage vector
contains phase-shifting and voltage regulation of the transformers. This guess is therefore closer
to the actual voltages than the flat-start.

If there are parallel branches to the phase-shifting transformer, it will drive a circular flow. In
this case the described procedure cannot be applied, due to the resulting voltage will be too low.
In this case, it is more productive to express the nodal powers as equivalent admittances.
Assuming, that the actual voltage magnitude is close to the nominal voltage, the equivalent
admittance at node i can be calculated

Y= =L (4.56)

The equivalent admittances are then implemented into the bus admittance matrix

Yikr =Ykx =YL (4.57)
In this case, it is better not to remove the shunt elements. The initial voltage guess can now be
calculated using eq. (4.55) again.

If the Newton-Raphson-algorithm still does not converge, the initial guess can be further
improved by calculating one iteration step of the Gauss-Seidel approach and using its results.
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4.3.4 Flow chart of the iteration

The iteration process is similar to the Gauss-Seidel-iteration. After choosing a suitable initial
guess, first the right hand side of eq. (4.31) is calculated and afterwards the Jacobian is built
depending on the chosen coordinate system. The slack and generator node constraints are now
implemented into the equation system. Now, an update vector is calculated which leads to a
new and improved guess of the nodal voltages. If the elements of the update vector are smaller
than a predefined threshold, the iteration is over, because the solution is sufficiently close to the

zero position. Otherwise, an additional iteration step is needed. The flow chart is given in Fig.
20.

Initial guess

Y
Construction of Jacobian
and right hand side

Y

Integration of the slack
and the generator nodes

Y

Calculation of the
improvement vector

Y

Calculation of the new
system state

Finalization

Fig. 20: flow chart of the Newton-Raphson-approach

The most important properties of the Newton-Raphson method are:

e Small convergence radius, that means, if the initial guess is bad, the approach will
diverge or find an invalid solution

e High convergence speed, that means, only a few iterations are needed to find a
sufficiently good solution.

e The Jacobian needs to be set up entirely new in each iteration step.

e The number of needed iterations is independent from the grid size and should be around
three to five iterations depending on the loading of the grid.

e Easy implementation of generator nodes
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Programming of the setup of the Jacobian needs to be as efficient as possible, due to this step
is computationally intense. To save some time, the Jacobian may be newly calculated e.g. only
every second iteration step. Nevertheless, this will lead to the loss of optimal convergence and
may require additional iterations.

4.4 Decoupled power flow calculation

Another possibility to save time building the Jacobian is to exploit simplifications that can be
applied due to special grid properties. This may result in a slightly different result compared to
the entire power flow calculation, but if applied correctly, the deviation stays sufficiently small,
such that the gained calculation speed is more advantageous than the loss of accuracy.

The R/X-ratio in the extra-high voltage level is around 1:10, which means, the grid can be
assumed to be entirely inductive and the ohmic part can be neglected. In eq. (4.45), this means,
that the phase angle a of the admittance is n/2. Compared to that, the phase angle difference of
the nodal voltages is rather small. In eq. (4.46) and eq. (4.47) this results in

cos(—ozi,j +0, —§j)zcos(—ai,j)zcos(—gJ:O

(4.58)
: . . T
sm(—au +6;, = ) ~ sm(—au ) ~ s1n(—5j =-1
This simplification leads to the following Jacobian
J= 10 (4.59)
o L '
with its submatrices
H=3U/BU
R (4.60)

L =3(UyB+diag(B uy ))

The power flow equation system is now decomposed into two smaller and independent equation
systems.

H AS, = Apy

(4.61)
L Aug =Aqgg

They still need to be solved iteratively because the Jacobian depends on the guess of the
voltages.

4.5 Fast decoupled power flow (DC power flow)

The fast decoupled power flow, which is also called DC power flow, additionally assumes, that
the related voltage magnitudes at each nodes are constant and match e.g. with the nominal
voltage. Using this assumption, Auy does not need to be calculated any more. Furthermore, H
becomes constant, due to H does also not depend on phase angles. Thus, iterations are not
needed anymore. The resulting nodal voltage phase angle can directly be obtained by solving
the linear equation system
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H oy = px (4.62)

Still, at the slack node, the reference angle needs to be set manually. If it is zero, the slack line
and column simply can be removed from the equation system.

Due to the many simplifications and assumptions, the result of the DC power flow differs
tremendously from the full power flow result. It is therefore only applied, if a very large number
of power flow calculations need to be performed (e.g. in Monte-Carlo-simulations or reliability
studies), in studies, that do not focus primarily on the grid result (e.g. market simulations) or to
estimate phase angles as an initial guess for the Newton-Raphson-approach. For the purpose of
grid planning and especially grid operation, its results are much too defective.

The above mentioned assumptions for the decoupled and the fast decoupled power flow
calculation are only valid for the extra-high voltage level. In the high voltage level or below,
the R/X-ratio increases. Thus, the calculation error increases that much, such that the results
cannot be used.







43

5 State Estimation

Similar to the power flow calculation, the state estimation is used to find a consistent grid state,
i.e. a set of nodal voltages. It is used in system operation to observe the grid and merge the
measured information into a consistent system state. Therefore, not only nodal active and
reactive powers are used as input parameters, but every possible and available measurement
from the grid as well as pseudo measurement. The estimated grid state

, T
Xest = [51,est e 5k,est I Ul,est e Uk,esti| (5 1)

is supposed to be as close to the actual grid state as possible

. T
Xact = [51,act 5k,act Ul,act T U'k,acti| (52)

This can be achieved by using a weighted least-squares approach originally described by Gauss.
The estimated grid state is the basis for all other grid calculations, e.g. contingency analysis or
short-circuit calculations and is used by the operational staff for decision-making.

In a conventional SCADA-system measured values are typically nodal active und reactive
powers, terminal active and reactive powers, nodal voltage magnitudes as well as nodal and
terminal current magnitudes. They can be merged to a measurement vector z, .

! ! ' T
T T | 4T T ., T :T .T
Zm = [ pK,m qK,m H pT,m qT,m ! uK,m ! IK,m |T,mi| (53)

If there are phasor measurement units (PMUSs) available in the grid, phasor information can be
additionally included in the state estimation process. Nowadays, although PMUs are installed
they are typically still not used for operational purposes, due to phase angle differences are
quite small in highly meshed grids and a small phasor measurement error may lead to high
deviations in the active power flow estimation and therefore do not help to improve the
estimation result. The same applies to currents. While active and reactive powers can be
measured with correct sign, information of flow direction (load or generation) is lost, if only
current magnitudes are measured. Hence, they may have bad influence on the convergence of
the state estimation. So, they are usually not used. In fact, the measurement vector in the extra-
high voltage level consists of about 75 % terminal powers, 20 % nodal powers and 5 % nodal
voltage magnitudes.

5.1 Measurement error and redundancy

While PMUs offer a precise and synchronized measurement, conventional SCADA-technology
cannot determine the measured information simultaneously and without error. Generally, all
measurands (even those of PMUs) are superposed by inaccuracies. That means, the measured
value z, is the sum of the actual value z and the error Az.

z,=1+Az 5.4

Az may consist of a systematic and a stochastic component. In the following, it is assumed, that
the systematic part is sufficiently eliminated e.g. by calibration such that only the stochastic
part needs to be considered. It depends on the chosen measurement process, the measured value
and the quality of the measurement device. It is further assumed, that the measurement error is
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normally distributed. In Fig. 21 the probability density functions of two measurement devices
with different quality are shown.

50
Y
I I 0'20,1 )
40 b =005
° 30 1
=
< 20} |
10} ]
0
1 0.5 0 05 1

Az inp.u.

Fig. 21: normally distributed measurement error

The probability function of a normal distribution is

h(Az)=——e *"° (5.5)

o is the standard deviation of the normal distribution function. The higher the quality of the
measurement device, the lower the standard deviation of the error.

To obtain a consistent grid state out of the bunch of faulty measurement information, and to
make this grid state close to the actual one, deviations and even outages of measurement devices
need to be compensated. To do so, redundant measurement is necessary, that means, there are
more measurement devices in the grid than actually needed to describe the system state.
Furthermore, it is assumed, that all measurands and thus all measurement errors are
independent. Similar to the power flow approach, the system state is described by the complex-
valued nodal voltage vector. So, for a grid with k nodes, 2 k system variables (magnitude and
phase angle or real and imaginary part) need to be calculated.

The relation of the number of measurements m and the number of system variables is used to
define the amount of redundancy

=1 g (5.6)
2k

To compensate the outage of a measurement device, a redundancy of r > 1 is aspired. That
means, the number of measurement devices is theoretically four times higher than the number
of nodes. In the European transmission system, redundancy is even higher, due to all equipment
is fully observed. This includes pseudo measurement which are pieces of information that are
well-known although they cannot or do not need to be actually measured. For example, nodal
powers of a fictitious node e.g. branching points of overhead lines are always zero and thus
known without measuring. Pseudo measurement can be included into the state estimation
process with a fictitious, high measurement quality.
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5.2 State estimation with linear measurement model

If there is an entirely linear dependency of measurands and system variables, the measurands
can be expressed using a linear equation system.

z=H x (5.7)

H is the measurement model matrix and has the dimension mx 2K . Its coefficients are constant

and do not depend on X_, . Due to the above-mentioned high redundancy, the equation system

est *
is overdetermined. It contains more equations than system variables. Such a measurement
model can be found in DC grids, if only currents and voltages are used as measurands. In three-
phase AC systems a linear measurement model can be achieved, if solely PMU data is used,
such that the estimation is based on complex-valued currents and voltages. As soon as powers

or magnitudes are used as measurands, the measurement model is non-linear.

According to eq. (5.4) and eq. (5.7) the measured values can be expressed as a function of the
system state and the measurement error.

z,=H X +Az (5.8)

est

The task of state estimation is to find a state vector X_, which minimizes the error in eq. (5.8)

est

Az=17—H X (5.9)

By doing so, the respective quality of the measurement device shall be considered. That means
a high quality measurand shall be considered more reliable than the information obtained from
a device with less quality. This can be achieved b relating the error to the standard deviation of
the device so it gets weighted.

Az, =S7'A7=57"(2,,—H X ) =2, —H, X (5.10)
with the weighting matrix S
—L ,
O
S = (5.11)
L
L Om _
The sum of the squared errors
m
F, = Az} =Az; ++Aes (5.12)
i=1
needs to be minimized and can therefore be expressed using eq. (5.10)
T T T T 4T
F, =4z, Az, =(zm’g -H, xest) (zm,g -H, Xest):(zm,g —Xest Hyg )(zm’g -H, xest) (5.13)
T T T T T T
= Zm,g Zm,g _Zm,g Hg Xest ~ Xest Hg Zm,g + Xest Hg Hg Xest

To find the minimum of F, its first partial derivations are set to zero.
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oF, az; z, . -2, H xes—xeTsH z, +xeSH H, X ) !
( e me me e i ' t)=o (5.14)

a XCSt 8 Xest

For the purpose of better understanding, the partial derivations are done separately for each
summand. For the first summand, this leads to
oz!

M =0 5.15
a Xest ( )

due to it only contains measured information and does not depend on X_. The derivation of

the second term leads to

est *

07y, H, X
. est — _Zr"i“lg . 0 Xest (516)
a Xest ’ a Xest
Analogously, for the third summand
a X_ H z
est m,g a Xest HT mg (5.17)
a Xest a XCSt
Using the product rule, derivation of the fourth summand leads to
0 Xe Hy H, X
= R R T T (5.18)
6 Xest 6 Xest a Xest

F, is a scalar value. That means, its transposed is again F,. The same can be applied to the

partial derivations. Thus

0 xest 0 X]

T est T
-z H = H 5.19
e ¢ a Xest a Xest mg ( )
and
o X ! T T 0 X
es H H Xegt = Xoge Hy H, —= 5.20
a Xest = ¢ ¢ a X;rst ( )
So, eq. (5.14) can be reformulated
a F a Xest T T !
— _28x (-Hg Zng+Hg H, X )=0 (5.21)
est est
Due to
0 X,
—SL=-E 5.22
O X, (5-22)
eq. (5.22) is only true, if
H, H, X =H; Zp (5.23)

or in more detail
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H'R'THx, =H"S"z_

(5.24)
AXy =Y
Eq. (5.24) is the Gaussian weighted normal equation with the covariance matrix R™'
R'=s's"! (5.25)

The system matrix A has the dimension 2k x2k. It is positive definite and symmetric. In
opposition to the non-linear measurement model, A is of rank 2K as soon as at least one voltage
measurement is included. Eq. (5.24) can directly be solved for X . The resulting solution is
the estimated, consistent system state, which best fits the measured values under consideration

of their different qualities.

5.3 State estimation with non-linear measurement model

The linear measurement model cannot be applied to an electric power supply system using
conventional SCADA technology. On the one hand, this is due to the fact that phase shifts
occur, and on the other hand due to the necessity of powers and voltage magnitudes in the
measurement vector. Eq. (5.7) therefore needs to be rewritten more generally

z=h(x) (5.26)
Accordingly, eq. (5.8) results in
Z, =h(X ) +Az (5.27)
and eq. (5.9) respectively
Az=17,—h(Xy) (5.28)

Similar to the linear measurement model, the errors are again related to the standard deviation
to make high quality measurands more important during the estimation process.

Az,=S"Az=5"7,-S" (X)) =2y, —N, (X) (5.29)

The weighted squared sum of F, results in

F,=Az; Az, = (z;m —hy (xest))(zg,m ~h, (xest))
= Zym Zom — Zom My (Xest ) =g (Xest) Zom + g (Xese ) Dy (Xest) (5.30)

gm “gm  “gm''g

=z 72 -2 hg(xest)zg,m+hg(xest)hg(xest)

~ “gm “gm

To minimize the error function, all partial derivations need to be built and set to zero again.

o xT o x! '

est est

Similar to the linear measurement model, the construction of the partial derivations is done
separately for each summand. Derivation of the first term results in

oz! z
AR 2 (5.32)

est
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Due to it is again independent from X_ . Derivation of the second term results in

est *

(-2 (X ) Zym ohT
( Z(XT )% )=—2—§)((;(e“)2g,m=—2 H, z,., (5.33)

est est

H, is the transposed Jacobian of h(X, ). It does not depend on the system state, thus the
coefficients are constant.

Using the product rule, derivation of the third term results in

ahgT(Xest)hg(xest)_ahg(xest)l,] hT ahg(xest)
axt - axT g(xest)+ g(xest)aT
est est est (5'34)
=2H, h,(Xy)
In conclusion the derivation results in
oF
- XTg =—2H] 7,,,+2 Hy h, (X ) ==2H; (Zy =N, (X)) =0 (5.35)
est
and accordingly
Hy D, (Xe) =Hy Zgm (5.36)

Eq. (5.36) still is non-linear due to its dependency on h( X ) Thus, the search for the optimal
estimated system state has to be done iteratively using e.g. a tangential approach. To do so,

h(Xest) is expressed by a Taylor series expansion in each iteration step u.

a h XCS 1l
hg (XeSt’”” ) z hg ( Xest ) + % A
Xest.u

est

Xest,y+1 = hg ( Xest,y ) +H o.u AXeSt,ﬂ+1 (537)

Insertion of eq. (5.37) in eq. (5.36) results in

H,, (hg (Xest,,u)+ H,, AX =H], z (5.38)

est, 141 ) g.u ~gm
which leads to the following equation system

H;:,u Hg,u AXest,,uH = H;:,u (Zg,m - hg (Xest,,u ))
A, AX Ay

(5.39)

est,u+1 = Y7

The system matrix A, again has the dimension 2k x2k. It is still positive definite and
symmetric. Usually, its rank is only 2k —1, especially if there are no shunt elements in the grid.
This is mainly due to the fact that power flows are driven by (complex-valued) nodal voltage
differences rather than their absolute value. To overcome this problem, a reference phase angle
can be manually defined. This can be done in a similar way to the Newton-Raphson power flow
calculation.
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5.4 Construction of the Jacobian

As described initially, the measurement vector contains power, voltage magnitude and
potentially even current magnitude information. The system state vector X., may be based on

either Cartesian or polar coordinates. In the following, polar coordinates are used as shown in
eq. (5.1).

5.4.1 Nodal powers

Nodal powers can be calculated using the power equation eq. (4.22). The partial derivations
with respect to voltage angle and magnitude are already known from the Newton-Raphson-
approach based on polar coordinates. Hence the Jacobian J developed in chapter 4.3.2 can also
be used for state estimation.

Opx  0JPx
00y Ouy
Iy =| Ok O (5.40)
0Qx  0J0g
00y  Ouy

For the purpose of state estimation only the lines of Jg, are actually needed, that represent a
node at which active or reactive powers are measured. This selection can be applied using the
nodal powers measurand incidence matrix Mg .

HSK = MSK ‘]SK (5.41)

5.4.2 Terminal powers

In its construction the terminal power equation
sr=3U;(Yrup) (5.42)

is similar to the nodal power equation. That means their partial derivations can be done the
exact same way as for the nodal power. Therefore, Y  simply needs to be replaced by Y
and instead of Uy U is used. This results in a Jacobian Jg; with dimension 2tx2t. The
derivation with respect to terminal values needs to be reassigned to nodal values. Due to
terminal voltages are a linear function of nodal voltages

U, = Kgp U (5.43)

this can be applied to the system variables as well

FT} Kir 0 FK} (5.44)
Uy 0  Kgr|lUk

Using the terminal powers measurand incidence matrix Mg, this results in

KL, 0}

(5.45)
0 K¢

HST = MST JST l:
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5.4.3 Nodal voltage magnitudes

Nodal voltage magnitudes are system variables themselves. Thus, construction of the Jacobian

Hy is trivial. Due to phase angles and magnitudes are independent values, on the left-hand
side a kxk empty matrix is used and on the right-hand side the unity matrix. Multiplication
with M|, removes the nodes without voltage magnitude measurement.

H, =My [O E] (5.46)
H, is the only constant submatrix and therefore only needs to be constructed once prior to the
iteration.
5.4.4 Nodal current magnitudes
To calculate the Jacobian, the nodal currents
g =Yg Ug (5.47)

are split into real and imaginary part

k
IKW = ZYKK,v,y UKJ cos(aw + 57)
-~ (5.48)

i = 2 Yk Uk, Sm(“v,y + 57)
7=1

such that the current magnitude results can be calculated

l, = \/Ié,r,v +1g., (5.49)

Using the chain rule the partial derivations are now performed. Derivation with respect to the
phase angle results in

ol Y U
_ Kyv _ KK,v,y K,y .
sy = = (<t sin(a,, +8, )+ 1, cos(a,, +5y)) (5.50)
06k, J12  +12.
> Kr,v K., v

Derivation with respect to the magnitude results in

ol Y,
_ Kyv _ KK,v,y .
v, = = (IK,W cos(ozw +57)+ Iiv sm(aw +§7)) (5.51)
Uy 12, +12,
24 K,r,v K, v

Using the nodal current magnitude measurand incidence matrix M, the Jacobian H is

HIK = MIK [‘]18 JIU] (5.52)
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5.4.5 Terminal current magnitude

In its construction the terminal current equation
ir=YrUp (5.53)

is similar to the nodal power equation. That means their partial derivations can be done the
exact same way as for the nodal power. Therefore, Y  simply needs to be replaced by Y
and instead of Uy U; is used. Similar to the terminal powers, the partial derivations with
respect to terminal voltages need to be reassigned to nodal voltages using the nodal-terminal
incidence matrix.

Kep O
Hir =M i T (5.54)
0 Kgr
5.4.6 Construction of the equation systems
The submatrices of H are arranged according to the measurement vector in eq. (5.3).
[opg Opg |
00 Ouy
Qg 00k
00y Ouy
Opr 9Py THo T
00 Ouy HSK
99  00; o
H = aag 6”1—2 = :U (555)
OUy  OUg HIK
00y Ouyg | - T
Ol Olig
00  Oug
Oip  Oip
00y Ouyg
Additionally, they are weighted
_ -l
H,=S"H (5.56)
This results in the overdetermined equation system
H, =Az, (5.57)
Aug
To solve it, it is multiplied with HgT as described in eq. (5.39). According to eq. (5.39)
A=H, H
£oE (5.58)

Ay=H, Az,
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To manually set a reference phase angle at one node, similar to the power flow approach, in the
equation system

A =Ay (5.59)
the additional constraint
Abg rer =0 (5.60)

1s added.

5.5 Flow chart of the iteration

The flow chart of the iteration is given in Fig. 22. It is similar to the flow chart of the power
flow iteration. Based on the current estimated system state the measured values are reproduced
with the system model and the difference to the measured information is calculated.
Subsequently, the Jacobians are constructed and the equation system to calculate the minimum
squared error is solved after the integration of the voltage reference angle. This results in an
update of the current estimated grid state. The procedure is repeated until the update is smaller
than a predefined threshold.

Initial guess

Y

Calculation of the
deviation Az

Y

Y

Construction of Hg A
and the right-hand side

Y

Definition of the
reference angle

Y

Calculation of a new
system state

Finalization

Fig. 22: flow chart of the state estimation iteration
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It is advantageous to use measured voltages for the initial guess. For the remaining voltage the
nominal value can be assumed. If needed, it is compulsory to set reference angles correctly for

the initial guess.
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6 Short-circuit calculation

Short-circuits are a high electric, thermal and mechanical threat to the electric power supply
system. The intensity of the short-circuit current and its impact on the assets and the
surroundings need to be considered not only during system operation but also during the grid
planning phase. That means, the assets and protection systems need to be dimensioned and
parameterized under uncertain conditions for highest and lowest possible short-circuits. In
doing so, it is assumed, that the three-phase fault results in the highest short-circuit currents. In
this case, only the positive sequence system needs to be modelled, due to the fault is symmetric.

The time-series of a three-phase fault at zero-crossing of the voltage close to a synchronous
generator is given in Fig. 23 together with some characteristic parameters.
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Fig. 23: exemplary time-series of a short-circuit current

The objective of short-circuit calculation — during planning as well as the operational phase —
is the calculation of the initial symmetrical short-circuit current 1, . To avoid constructing and
solving a differential equation system, the standard IEC 60909 defines some factors which
allows to sufficiently precise infer on other important parameters. These are mainly:

e the maximum aperiodic short-circuit current i,
e the breaking current |,

e the steady-state short-circuit current |,

e the thermal equivalent current |

The approximation of these characteristic parameters using IEC 60909 factors shall only be
applied to public energy supply grids showing a homogenous R/X-ratio and only a couple of
rotating machines. In industrial grids and grids for station supply, which are characterized by a
high amount of drives, the error of estimation increases to such an extent that only solving the
differential equation will lead to a reliable solution.
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While the objective of the short-circuit calculation is always the same, the input data is different
during grid planning and grid operation. Grid operators can rely on actual, online grid
information, e.g. the estimated grid state, which includes load and generation information as
well as tap positions and switching states. Thus, it is possible to apply a detailed short-circuit
calculation that is based on the estimated grid state. Besides the initial symmetrical short-circuit
current it is also possible to calculate the exact nodal voltages during the fault or the time-series
of currents and voltages by solving the differential equation.

Short-circuit calculation during the grid planning phase is characterized by a high amount of
uncertainty. Neither switching states nor the exact load and generation situation are known.
Nevertheless, based on only little information, it is important to still get a good estimation of
biggest and smallest possible short-circuit currents. Due to the computational intensity, it is not
productive to obtain this estimation by simulating different scenarios. Instead, the extrema are
estimated by applying simplifications and assumptions that are considered to safely model the
worst-case and best-case scenarios. So, all possible short-circuits that may later occur during
grid operation are definitely inside this interval.

6.1 Single line diagram of dipoles for short-circuit calculation

Short-circuits are fed by all rotating machines — generators and drives — as well as equivalent
networks. As seen in Fig. 23 the initial symmetrical short-circuit current is a fictitious RMS
value, that would envelope the short-circuit current in the initial moment. To calculate the share
of the generators their subtransient model is needed. As usual, the admittance form given in
Fig. 24 is most advantageous.

Fig. 24: subtransient single line diagram of synchronous generators

with the subtransient direct axis admittance

14 1
R HIXG

(6.1)
It is used, due to 1" solely depends on rotor fluxes, which stay constant in the moment of

transition from the non-faulty to the faulty state. Induction machines do not have a subtransient
state. They are described using the transient model

ll@ Y. | Yu

Fig. 25: transient single line diagram of induction machines
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with the transient admittance
/ 1
Y =—T;
R+ X

Equivalent networks are modeled analogously to synchronous machines as shown in Fig. 26

(6.2)

Fig. 26: single line diagram of an equivalent network

with the short-circuit admittance
yio_ 1 (6.3)
TR+ Xy '
It is obtained from the R/X-ratio of the grid and its short-circuit power S;
v=L1Y{ U (6.4)

Loads without spinning reserve do not contribute to the short-circuit current. It is sufficient to
model them as passive dipoles, as nodal currents or as equivalent admittances which are
included in Y .

I

1<
=

U,

Fig. 27: single line diagram of a load without spinning reserve

6.2 Exact calculation

The exact calculation of the initial symmetrical short-circuit current is only possible during
system operation, due to switching states have a high impact on the occurring currents and the
grid state prior to the fault needs to be known e.g. in form of estimated nodal voltages. In the
nodal current equation

Yk Ug =g (6.5)

the nodal currents are the sum of currents of dipoles which are connected to the respective
nodes. They are now replaced by the single line diagrams given in chapter 6.1. Shunt
admittances are added to the bus admittance matrix while source currents remain on the right-
hand side. So, eq. (6.5) results in

(!KK _!”)HK = Kirzp i

" "

Yk  Ug =lgk

(6.6)
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Y" is a diagonal matrix with the shunt admittances of the dipoles on the main diagonal and 1q
is the vector of source currents. Loads without spinning reserves are entirely modelled as
admittance, thus i'(; is zero at nodes without machines. Y i is invertible due to the additional
elements on the main diagonal.

If a three-phase fault occurs at node i the voltage at this node is set to zero and a potential source
current at this node is superposed to all of the short-circuit contributions of the other dipoles.
This results in the initial symmetrical short-circuit current I_;L at node I.

o " i n " o] o
L,l Xl,z—l ; Xl,z : Xl,z+1 Xl,k U ‘I lq,l
. . . f . f . . =k, .
: : -

" " L o " "
Yiaa o Lo i oy Yonn 0 Yo [ Uy || Laia
" " i " i " " PN "
g v Lo i Y i Y e L | R ey ©D

" " Lo o " U, . "
\ \ een =k,i+l .
!i-%—l,l Xz+1,1—1 X Xz+1,1 X X1+1,1+1 Xi+1,k . l lq,l+1
! ! U
" " i " i " " L =kk "
_Xk,l Zk,ﬂ : \ik,i : Xk,i+l Xk,k | L lq,k ]

Eq. (6.7) can be solved, by removing the i-th column and row. The reduced equation system is
solved for the faulted nodal voltage vector Uy, . It is afterwards used to solve the previously
removed i-th row for 1 .

System operators need to know the impact of a potential short-circuit at each node. Therefore,
eq. (6.7) would need to be constructed and solved for each node separately. Using today’s
computational power and the possibility to parallelize the process, computational time is
tolerable even in bigger grids with lots of nodes. Nevertheless, it can be minimized, if the
(reduced) system matrix of the equation system would not depend on the fault location and
therefore becomes constant. In this case, the equation system would only have to be constructed
and inverted once. This can be achieved by using a superposition approach which allows to still
calculate short-circuit voltages and currents correctly.

6.3 Superposition approach by Helmholtz and Thévenin

The superposition approach aims at calculating the faulted system state as a superposition of
the non-faulty state and a differential state. Eq. (6.6) is therefore expressed as follows

n - -
Ykk (HK + AU ) =1, + Al

(6.8)
Y kk Uk x = gk
Eq. (6.8) consists of the initial state prior to the fault
Yk Ug =i (6.9)

and the differential state

Y ik AUy = Ay (6.10)
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As described above, the system matrix is constant and does not depend on the fault location.
Furthermore, due to it contains additional elements on the main diagonal, \L;K is invertible.
Therefore, eq. (6.10) can be directly expressed in its impedance form

Zik Ay =AUy, 6.11)

To model the short-circuit constraints at node i in accordance to eq. (6.7), at the fault location,
the differential state corresponds to the negative voltage prior to the fault

ALl](,k,i = _QKJ (6.12)

The short-circuit current only occurs at the fault location i. Furthermore, source currents of

generators and drives are constant. Therefore, A[K’k is zero, except at position i. Thus,
eq. (6.11) can be written in more detail

' '
" 14 ! " ! 14 14

Z N4 4 4 e 7 - - -
=11 ZLi-1 v =1y =i+ 1,k
: . S . : 0 —I AU,
14 14 14 f 14 14
%':.1.1__ R _.%1:_1:1:1__ __Z__’:l:_f __f_%_’:}’lil e _Z—_lf_l’_l_‘_ 0 AU
" " : " : " " " _ ...:. -...
Ziy v Zig Zi Lo v Zi (AL S| E ) 613)
” "” ; n ; " " 0 AQHI k
;i+11 L+1,z—1 j Zm,z j Zz+1,7+1 Zi+1,k
14 " E 14 E 14 ”n L O J L Auk k
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In the i-th row of eq. (6.13), AI_;"k can be directly calculated

Ly

n —I

Aljy =- (6.14)

Lii
After that, the differential voltages at all the other nodes can be obtained by multiplying Al;:k

with the i-th column of the impedance matrix. This differential state is finally superposed with
the initial state according to eq. (6.8). The differential state is also called Thévenin equivalent.

A graphical representation of the superposition approach is given in Fig. 28. The grid and all of
its non-spinning loads, shunt elements, drives and generators are summarized as a black box
and only the short-circuit position at note i is drawn separately. The faulty state (left hand side)
consists of the initial state (middle) and the differential state (right hand side), which contains
the voltage constraints at the fault location.

<

=
<

Q

W Y. |Ye Y \

Fig. 28: principle of superposition

Using the superposition principle, a change in the fault location can be implemented by simply
changing the right hand side of the equation system given in eq. (6.13). The system matrix does
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not need to be reconstructed or reinverted. If D is the diagonal matrix of Z{(K, then the
differential states of all short-circuits at every node can be calculated in one single step.
Ai” kK~ _D_l u
A A (6.15)
" -1
AL_JK,k = _;KK D !K

6.4 Short-circuit calculation according to IEC 60909

To exactly calculate the short-circuit currents, a dedicated system state described by a consistent
nodal voltage vector needs to be available. This is not the case during grid planning, due to
information on load and generation can only be approximated and switching states as well as
tapping positions need to be assumed. The method of placing an equivalent voltage source at
the fault location according to the standard IEC 60909 is a suitable approach, which minimizes
the need for exact input information but is still able to estimate biggest and smallest possible
short-circuit currents at a fault location.

The method is loosely based on the superposition approach. Nevertheless, information on the
initial state is not available due to the lack of operational information. Thus, only the differential
state is considered. Additionally, some simplifications are used:

e Loads without spinning reserve used to be modeled entirely as admittance in the
equation system. During the fault, voltages over the loads are very low. Thus, they are
neglected. By doing so, load uncertainty has been bypassed.

e For the same reason of low voltages during the fault, shunt elements of the equipment
(mainly capacitive shunts of lines) are neglected.

e To overcome the uncertainty of generation, all sources in the grid are passivated, which
means, current sources are opened and voltage sources are short-circuited.

e Shunt elements of drives, generators and equivalent networks are kept in the grid.

By doing so a source-free, unloaded grid is constructed, which only contains the shunt elements
of drives, generators and equivalent networks but besides this has no connection to ground.

Now, at the fault location an auxiliary voltage source U, is connected, which drives the short-
circuit current. Due to the exact voltage magnitude is unknown, the nominal voltage and a
correction factor C is used.

(6.16)

X&Z/
Uaux
v Xﬁ N Y

Fig. 29: short-circuit calculation according to IEC 60909
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It is obvious, that using this approach the short-circuit contributions of machines and equivalent
networks are almost proportional to their internal admittance. The method of the auxiliary
voltage source at the fault location aims at approximating the short-circuit currents close to the
fault location. With increasing distance to the fault, the error of estimation increases as well.
The same is valid for the voltages.

By trend, neglecting shunt elements and load admittances leads to short-circuit currents that are
estimated lower than the actual ones. This can be compensated by the correction factor C.
IEC 60909 suggests the following factors for transmission systems

1,1  to calculate maximum short-circuit currents
c= (6.17)

1,0  to calculate minimum short-circuit currents

In distribution systems, even C <1 is possible.

Estimation of biggest short-circuit currents is used to dimension and parameterize assets,
insulation and bearings in such a way, that they can bear the maximum thermal, mechanic and
electric stress. On the other hand, estimation of smallest short-circuit currents is used, to
correctly parameterize the protection system to make sure that all faults — even those with low
impact on currents and voltages — are securely detected and switched off.

The calculation of the short-circuit currents is done analogously to the calculation of the
differential state of the superposition approach. The system matrix is constant and invertible.
To calculate the short-circuit current at the i-th node, first, the initial symmetrical short-circuit
current is obtained from the i-th row. Usually, this information is sufficient during grid
planning, so the process can be stopped at this point. To additionally calculate the currents on
the lines and the contribution of each generator, the voltage differences can be obtained by
multiplication of the i-th column of the equation system with the initial symmetrical short-
circuit current.

The equation system is similar to the equation system of the superposition approach.
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. . . ! . ! . . ~ 1,k
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" " ! noo " " P T
;i,l e Zz,z—l : Zz,z : Z;,Hl e Zj,k I—i,k - __.L{e_r_s“. (6 1 8)
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6.5 Impedance correction

As described above, using an auxiliary voltage source at the fault location leads to short-circuit
currents that are not very precise. According to experience, contributions on power plants
(synchronous machines) are estimated up to 40 % too low and contributions of drives (induction
machines) too high. Due to the inner sources of the machines are passivized, the only possibility
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to correct the respective short-circuit contribution is to modify the impedance of the machines
to artificially increase or decrease their short-circuit current.

The process is explained using a generator which runs at the rated operation point prior to the
faults. This means,
U
Ug = —=
NE) (6.19)
Ig=-lg¢ (COS((prG )_j Sin((PrG ))

If there is a three-phase fault at the terminal of the generator and the armature resistance R, is
neglected, this leads to the following short-circuit contribution

L _Ye—iv3Xilg
-k,G \/5] Xg

If the same case is modeled using the auxiliary voltage source at the generator terminal, this
will result in

(6.20)

U CUoy

I ~ Yaux

WFT o, T ”
! J X4 J\/gxd

To match 1,5 and 1,;, in eq. (6.21) a correction factor k is introduced to modify the
subtransient direct axis impedance.

UrG_j\/gx('i,lG_ CUnN
ViX§ iV3keX{

(6.21)

(6.22)

Eq. (6.22) is solved for K
cU
UrG _\/g-] X(’i’ er

Using the rated generator current in eq. (6.19) and the definition of the subtransient direct axis
impedance

KG:

(6.23)

Uz U
X{=xj=—4 =x]——=4 (6.24)
d =% S.. d B B
eq. (6.23) can also be expressed
K = cU. _ cU.
K U —jxt U I Ug+iXiUg (cos(gorG)+jsin(gorG))
lG (6.25)
~Un c

B U 1=xisin(pg)+]X;cos(o)

The imaginary part of K is small compared to the real part. So, it is suitable to neglect it,
which also leads to a real-valued correction factor.

O ¢ (6.26)
Ug 1-X] sm((orG)

G
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Usually, K is smaller than one. So, the correction factor will decrease the impedance of the
generator and thus increase its contribution to the short-circuit current.

The development of the correction factor for drives is done analogously. Usually, the rated
voltage of the drive is equal to the nominal grid voltage. This results in

C
- X§ sin((orM)

Ky (6.27)

ky 1s usually greater than one. So, the correction factor will increase the impedance of the drive
and thus decrease its contribution to the short-circuit current.
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7 Stability

Stability of the electric power supply system describes the capability of generators to stay
synchronized even in dynamic situations like load changes, faults and fault clearance. The
system is fed by a large number of differently sized generators, mostly synchronous machines.
Their big gyrating mass mainly contributes to the inertia of the entire system and leads to the
comfortable fact, that electro-mechanical transients proceed rather slowly which simplifies
control of the grid. Thus, generators define the stability of the system.

Usually, stability is understood as rotor angle stability of the generators (in contrast to voltage
stability and frequency stability). Rotor angle stability can be further divided into

e Steady-state stability (small-signal stability), to prove the existence of stable operation
points, that means analysis of the capability of the generators to stay synchronized at a
given operation point

e transient stability, which analyzes the capability of generators to find a new stable and
synchronized operation point after a bigger disturbance.

Besides rotor angle stability, also frequency stability (long term stability) and voltage stability
are of interest. They are not dealt with in this chapter.

7.1 Generator models

To analyze small-signal and transient stability, different generator models need to be applied.
They can either be implemented as voltage or current source. Both ways are comparable. While
the current source is advantageous for grid calculations based on admittance matrices
implementation of voltage sources is more descriptive and allows the transfiguration of the grid.

Small-signal stability is a steady-state problem. That is why the steady-state generator model is
used. The synchronous generated voltage drives the generator current and is connected to the
grid via the synchronous impedance which consists of the armature resistance and the
synchronous direct axis reactance.

Zo=—=R +iX (7.1)
G a d

b
Yo

1, i@ Yo | Ue upl U

Fig. 30: steady-state generator model

The synchronous generated voltage linearly depends on the rotor speed w and the excitation
current |, . If there is a sudden disturbance in the grid, this will lead to an abrupt reaction of the
rotor currents, to keep the flux linkage constant. This reaction has such a strong influence on
the synchronous generated voltage, so that it cannot be used for transient analysis.

Other than the synchronous generated voltage, the transient generated voltage does not depend
on the excitation current but only on the rotor flux linkage. If the effects of the damper winding
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are neglected, there will be an abrupt reaction as well. Nevertheless, it is sufficiently small.
Additionally, the transient generated voltage fades only little after the fault. So, in a good
approximation it can be seen almost constant during the entire time. It is therefore the best
choice to model phenomena that occur in the transient domain.

The single line diagram of the transient state is similar to the steady-state model. Besides the
transient generated voltage or current, the transient direct axis impedance is used, which is about
one fifth of the synchronous direct axis impedance.

Z, =L —R+ix; (72)
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Fig. 31: transient generator model

|

The phasor diagram summarizes steady-state and transient operation points of the synchronous

generator.
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Fig. 32: phasor diagram of a synchronous generator

The synchronous generated voltage rotates synchronously with the rotor and lies in the
quadrature axis q of the generator. Its phase angle in relation to the phase angle of the reference
voltage U  describes the rotor position.




7.2 Description of rotor motion 67

7.2 Description of rotor motion

The equation of motion of the rotor of a synchronous machine is described by the principle of
conservation of angular momentum

JQ=YM (7.3)

Q is the mechanical rotor speed. It can be converted to the electric rotor speed by multiplication
with the number of pole pairs of the generator.

@ =pL2y (7.4)

The generator is accelerated by the mechanical torque M, provided by the turbine and slowed
down by the electrical torque M_ which results from the infeed of active power into the grid.
If rotor speed and grid frequency differ, this results in a change of the rotor angle.

S =0, -, (7.5)
Eq. (7.3) and eq. (7.5) form a first order differential equation system.
1 ol[&1| [0 —1]& —@
o L = 0 (7.6)
0 a0 olle] | p(M,+M,)

To analyze stability issues, it is more productive to only look at deviations from synchronous
operation. Thus, only changes of the rotor position in relation to the reference phase angle are
calculated. Eq. (7.6) is therefore rewritten

Ll) SLASLHS QI}KSJZL(M:WJ (7.7)

. 0
[A§1={0 1{A5}+ ) 78
Ady | 10 0]|Ae -ﬂMm+MJ

The operation points of the turbine and the generator are usually expressed using powers instead

In explicit form

of torques. Via the relationship

M m = —= PT i
Q2 @y,
5 (7.9)
M,=—=P, P
() @y
torques can be replaced in eq. (7.8).
' 0 1] As !
Ao
= +| p? o, (7.10)
Aoy 0 O0|lAw Pr+—P,
J o, @,

The question of rotor angle stability is answered within a couple of seconds after the disturbance
and potentially its clearance. During this time, due to the big gyrating mass, rotor speed does
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not change very much. Thus, it can be assumed, that the rotor speed is still almost equal to the
grid frequency.

ONESRON (7.11)
Using the mechanical time constant of the generator

2
I % (7.12)
Sr,G p

and the assumption of eq. (7.11), a machine factor k  can be introduced

2
kK =P~ % (7.13)
J a)L Tm Sr,G

which further simplifies eq. (7.10)

[AA;}B é}{fi}{km(lol pe)} (7.14)

7.3 Equivalent network model

Similar to generators, equivalent networks are modeled as dipoles. Nevertheless, the phase
angle of the inner source is always synchronous to the grid frequency. The initial value can be
obtained from a power flow calculation of the steady-state operation point prior to the
disturbance. It stays constant the entire time.

ll — || |u uNl u

Fig. 33: voltage and current source single line diagrams of equivalent network models

7.4 Grid transfiguration to the generator nodes

For the purpose of stability analysis, usually generators and equivalent networks are modeled
as voltage sources. The main disadvantage of this approach is, that the k actual grid nodes are
supplemented by g fictitious, inner generator nodes. Nevertheless, for this analysis only
generator voltages and currents are needed, thus the grid can be reduced to the inner generator
nodes. This procedure is called transfiguration. All loads without inner sources are expressed
again as equivalent admittances Y| and included on the main diagonal of the bus admittance
matrix. So, all currents at nodes without drives or generators are zero. The equation system
consists of k grid nodes and g inner generator nodes which are connected to the rest of the grid
via Y.
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Yo = - for the purpose of small-signal stability
Ra + .]Xd
. (7.15)
Yo=—"T for the purpose of transient stability
R, +3X4

The generator incidence matrix K, describes the connection of a generator to a grid node. It
is built analogously to K. This results in the following equation system

Yk =YL —Kigs Yo KIIG Kke Yo {QK}:[O} (7.16)
Ys KIZG Y Yo g
Using the abbreviation
!KK,G,L =XKK _!L - KKG XG KIZG (7.17)

The upper half of the equation system can be solved fur Uy . The result is inserted into the lower
equation system

_(XG KIEG !;K,G,L Kk Y6 +Yao )HG =Y g6 Ug =lg (7.18)

Eq. (7.18) now has the dimension gxg. The resulting system matrix is dense. If Y, is
symmetric it will be symmetric, too. Their diagonal elements are called feeder admittance and
the other elements transmission admittance.

7.5 Small-signal stability

Small-signal stability describes the capability of generators to stay in a synchronous operation
point under steady-state conditions. Calculation of small-signal stability is therefore the search
for the existence of stable, steady-state operation points. Besides the active power infeed of the
generator, additional parameters e.g. voltage control may be included.

7.5.1 Demonstration of small-signal stability using the single-machine-problem

To visualize the process of small-signal stability analysis, the single-machine problem is used.
The generator is connected to a grid given in Fig. 34. All assets are considered entirely inductive
so losses are neglected. The generator feeds into the grid via a two-winding transformer and a
system of two parallel lines.

ORROS 35

Fig. 34: single-machine problem

This results in the following single line diagram.

X Xy 0,5 jX, Xy
u,|(D s

Fig. 35: single line diagram of the grid
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The power exchange of the grid and the generator is defined by the inner voltages and the
impedances between them.

U _U:
S$=3 =p =N (7.19)

(j(xd+XT +;XL+ XND

The inner voltage of the grid is usually defined as reference voltage and the reference phase
angle is set to zero. Thus, it is real-valued. If the synchronous generated voltage is expressed
by magnitude and phase, the active power output of the generator in eq. (7.19) can be expressed

as follows

u,u
P;=-3 Lo

Xd+XT+;XL+XN

sin(é‘p) (7.20)

Due to the grid is considered entirely inductive without ohmic losses, the active power infeed
of the generator corresponds with the active power consumption of the grid.

P, =-P, (7.21)

The power curve of the system is given in Fig. 36.
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Fig. 36: operation points of the generator

The intersections of the power curve with the active power output of the turbine are possible,
steady-state operation points of the generator, due to the sum of power is balanced. Proof of
small-signal stability of the two operation points shall be done with a thought experiment.

First, the left operation point is reviewed:

e [f'the generator accelerates, the rotor angle increases a little bit. At that moment, it feeds
more power into the grid as actually provided by the turbine. This difference has to be
taken from the kinetic energy, which means the generator slows down until the power
balance is reached again. Thus, the generator returns to its original operation point.

e If'the generator is slowed down, the rotor angle decreases a little bit. At that moment, it
feeds less power into the grid as actually provided by the turbine. This difference is used
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to reaccelerate the generator until the power balance is reached again. Thus, the
generator returns to its original operation point.

Consequently, the left operation point is stable. The experiment is repeated for the right
operation point:

e Ifthe generator accelerates, the rotor angle increases a little bit. At that moment, it feeds
less power into the grid as actually provided by the turbine. The difference is used to
accelerate the rotor even more, which means, the rotor angle is further increasing. Thus,
the generator is drifting apart from the operation point and will not return to it.

e If'the generator is slowed down, the rotor angle decreases a little bit. At that moment, it
feeds more power into the grid as actually provided by the turbine. This difference has
to be taken from the kinetic energy, which means, the rotor is further slowed down and
the rotor angle is further decreasing. Thus, the generator is drifting apart from the
operation point and will not return to it.

Consequently, the right operation point is instable. Having a look at Fig. 36 a stability limit can
be found at n/2. Furthermore, it is obvious, that a smaller rotor angle means a more stable
system.

7.5.2 General calculation of small-signal stability

Small-signal stability can be described using eigenvalue analysis. Due to the displacement in
the thought experiment is a small signal, a linearization of the motion equation system of the
generators around the operation point is valid. For g generators eq. (7.14) is converted to matrix

form
AS, | [0 E}{A(sﬂ { 0 }
L= + (7.22)
Ady | [0 0] Ae | [ Ku(Prtpe)

Due to the active power output p, of the generators is a trigonometric function of the rotor
angle, the system is non-linear. Linearization is achieved by the application of a Taylor-series

0
AS 0 ET[AS
b { } b, op. (3,0 (7.23)
Ao, | [0 0J[Aw, | |Ky| Pr+Peot—— A9,

T
OAd,

expansion.

The linearized part of the active power output is included into the system matrix. Due to the
system has been linearized around an existing operation point, p; and p,, sum up to zero.
This results in the remaining equation system.

0 E

MPTJ ap,(3,0) {M"} (7.24)

A@LJ {Kmﬁ 0 || Ay
p

The eigenvalues of the system matrix of eq. (7.24) are a description of the self-oscillation of
the uncontrolled generator. As long as no eigenvalue has a positive real part, the system is




72 7 Stability

stable. Differentiation of the active power output with respect to the rotor angle is done
analogously to the construction of the respective submatrix of the Jacobian of the power flow
equations in polar coordinates.

Exemplarily, in case of the single machine problem, the result is

u,u
P _ Pg =32~ cos(ép) (7.25)
o5, 00, DX

This results in the characteristic polygon

) |
N 2 U, Uy '
3k Uzp:lj(N cos(3,,) 4| 22 +3k, S cos (3, )=0 (7.26)
with the eigenvalues
Aip= J—3 K Uzpltj(’“ cos(d, ) (7.27)

As long as cos(ép,o) >0, which means J,, < % eq. (7.27) results in a complex-valued pair
of eigenvalues without real part. Thus, the generator is stable. If o, > 7[2, which means
cos (5p,o) <0, areal-valued pair of eigenvalues is obtained, whereof one eigenvalue is positive.
In this case, the generator is instable.

7.5.3 Measures to increase small-signal stability

To increase small-signal stability, it is necessary to find an operation point far away from the
stability limit. Furthermore, to increase the capability of the generators to keep synchronism, it
is aspired to get a high gradient of the generator’s active power output. According to eq. (7.20)
several possible solutions are thinkable. To decrease sin(ép) but keep P; constant, the
numerator needs to get as big as possible and the denominator as small as possible.

Decreasing the denominator means, to reduce the impedance between the generator and the
grid. This can be achieved by increasing the number of meshes in the grid, parallel lines or by
series compensation to reduce the dominating inductive part of the impedance.

The grid voltage can only be changed within a small band around the nominal value. Thus, the
only way to increase the numerator is to control the synchronous generated voltage. This is
done by excitation of the synchronous machine. The synchronous generated voltage is a linear
function of the excitation current. For the purpose of simplification, the degree of excitation ¢
is introduced.

g=—P (7.28)

With € eq. (7.20) can be rewritten

P, =3¢ I\;( sin(ép) (7.29)
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A higher excitation increases the breakdown torque of the generator and the stable operation
point moves towards smaller rotor angles. The power output diagram of the single-machine
problem is given in Fig. 37 for several degrees of excitation.
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Fig. 37: impact of excitation on the position of the operation point

It is obvious, that small-signal stability decreases with decreasing excitation. These operation
points are necessary, if capacitive shunts e.g. of lines in the grid provide a sufficient amount of
reactive power. In this case the generator is only little excited or even under-excited to push the
voltage down again. So, in contrast to all other contingencies in the grid, the biggest threat to
rotor angle stability is not the highly loaded grid but the unloaded grid due to the lines provide
enough reactive power themselves. This can only be reduced by switching off lines to higher
burden the remaining grid. But this is limited by additional constraints mainly due to the n-1-
criterion.

7.6 Transient stability

Transient stability is the capability of generators to return into a new stable operation point after
a disturbance in the electric energy supply system. Usually, the three-phase short-circuit is
considered the biggest possible disturbance. It leads on the one hand to the biggest imbalance
of power but on the other hand, it is symmetric and can be modelled using only the positive
sequence system.

In contrast to the small-signal stability, the disturbance is so big, a linearization at the operation
point prior to the fault cannot be applied. Instead, the motion equation system of the generators
needs to be solved by numerical integration. The resulting time-series of the oscillations of the
rotor angle show the transient behavior of the generator and are needed to obtain the time-series
of all other electric and mechanical information. In contrast to the mechanical osciallations of
the rotor, the electric transients in the grid are damped rapidly, such that the grid can be
considered steady-state again. The necessity of steady-state grid analysis and dynamic rotor
motion calculation results in an algebro-differential equation system which is typical for quasi
steady-state analysis. The question of transient stability is answered within the first couple of
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seconds after a disturbance. This fact can be used to simplify the analysis by making the
following assumptions:

e The transient generated voltage is constant, due to the voltage controllers have not
reacted in such a short period of time.

e The torque of the turbine is constant, due to the governor is slow.

e Loads are constant and can still be modeled as equivalent admittances.

e Frequency control has not reacted due to the rotor frequency is still within the tolerable
bounds.

In combination with the three-phase short-circuit but with exception of the first assumption,
this represents the worst-case. In a real system, the generator would be more stable than
predicted by these assumptions.

7.6.1 Demonstration of transient stability using the single-machine problem

The principles of transient stability are visualized using again the single-machine problem given
in Fig. 34. Therefore, a three-phase fault on one of the lines close to the bus bar is assumed.
The fault is later on cleared by switching off the faulty line. This results in three different single
line diagrams: prior to the fault, during the fault and after clearance of the fault.

!

, X, Xy 0,5 jX, Xy
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Fig. 38: single line diagram prior to the fault
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Fig. 40: single line diagram after the fault

First, the initial values of &' and Q' or l'q, respectively, are based on a load flow calculation
of the system prior to the fault. The generator is operated at a stable operation point. Using the
generator terminal voltage U ; the transient generated voltage is obtained
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U'=U"e =Ug-iX4 g (7.30)
with
9§ =6"+9 (7.31)

Usually, the reference phase angle of the grid voltage is set to zero such that 9" =¢6". Similar to
the synchronous generated voltage, the transient generated voltage is fixed to the rotor, too.
This means that ' can also be used to model the motion of the rotor. The system was in steady-
state before the fault, so the initial values of the variables of the motion equation are all zero, if
the motion equation is related to the synchronous speed.

Due to the three-phase fault, the generator cannot provide any power to the grid anymore. The
generator current abruptly shifts to the transient short-circuit current

!

' V)

_ 7.32
I(X§+Xp) (732

This is a pure reactive current. The power provided by the turbine is fully used to accelerate the
generator, resulting in a change of the rotor speed.

o=k, P (7.33)
So, the rotor angle increases quadratically over time for the duration of the fault.

' - 1 ’
5'(t)=[wdt=[o drdt=—k, Py t2+5, (7.34)

At the moment of clearance of the fault, the transient generated voltage phase angle is Oy .
From that moment on, the generator is able again to feed power to the grid according to its
power curve. Clearance of the fault resulted in a topological change of the system, due to one
of the lines has been switched off. That is why the power curve now is below the original one.
According to the curve, the generator provides more power to the grid than it receives from the
turbine. As already known from small-signal stability analysis, the generator starts to slow
down. Due to the rotor is considerably faster than the grid, it takes some time to slow it down,
until it is synchronous again. Up to then, the transient rotor angle is still increasing. Such a point
of synchronism can only be found left from the instable, second operation point. Otherwise, the
generator would already be accelerated again and starts to overrun. In this case the generator is
transiently instable and needs to be switched off.

If there is a first point of synchronism, the provided electric power there is superior to the power
of the turbine, which means the rotor starts to slow down and the rotor angle decreases. The
rotor speed is now slower than the grid frequency, so the rotor overshoots the stable operation
point and needs to be accelerated again. It becomes apparent, that the generator reaches its new
stable operation point by a damped oscillation. The process is shown in Fig. 41.
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Fig. 41: acceleration and breaking areas of the single machine problem

The question of transient stability is therefore a question of the existence of the first point of
synchronism. It can also be answered by having a look at the change of the kinetic energy of
the generator. During the fault, the kinetic energy of the rotor increases.

AE,, :l%Awﬁ :%JA_Qf - L

! ’ 1
P (St =) =— Awe (7.35)
@ @

This increase is proportional the product of the turbine power and the rotor angle difference
prior to and after the fault. This product corresponds to an area A, in Fig. 41, which is
therefore called acceleration area.

The same considerations can be made for the time after the fault clearance and the first point of
synchronism. During this time, the rotor is slowed down which is why the resulting area A,
is called breaking area. The area is
Sinax
A= | Pr =P (5")d5" (7.36)
Skc
If there is a solution for eq. (7.36), which means there is a J, . , with

max ?

Atce (T ) = A (7.37)

in this case, the generator is transiently stable.
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Fig. 42: time-series and roto speed for a transiently stable generator
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Fig. 43: critically stable time-series of roto angle and rotor speed
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Fig. 44: instable stable time-series of roto angle and rotor speed

It is obvious, that transient stability does not only depend on the operation point of the generator
but also on secondary factors like the fault location and the duration of the fault.
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7.6.2 General determination of transient stability in grids with several generators

In real grids which are fed by a variety of different generators it is usually impossible to rely on
a synchronous equivalent network. In fact, the oscillations of the generators among themselves
are analyzed. A grid containing ¢ generators results in a differential equation system with 2 ¢
variables according to eq. (7.22). The generator currents and transient generated voltages can
be used to calculate the electric active powers p, which are needed to numerically solve the
differential equation system. This results in a time-series of the rotor angle motions. Their
behavior is used to decide, whether the system is transiently stable or not. If the rotor angles
settle at a new steady-state value and stay close to each other, the system is transiently stable.
If one of the angles diverges from the others, this generator is instable.

Instead of the reference angle of an equivalent network, the center of inertia of the generators
can be used as reference value. It is obtained by the weighted average of the rotor angles.

g
Z(SrG,i Tm,i é‘lr)

Sy ==l (7.38)

The generators oscillate around their common center of inertia. Topological properties of the
grid may lead to distinct groups of generators that will form their respective centers of inertia.
These groups can be used to aggregate generators and save computational time by simply
analyzing the mutual motion of the aggregated groups.

Fig. 45: multi-machine problem
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Fig. 46: stable time-series of rotor angle and speed (fault duration: 150 ms)
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Fig. 47: critically stable time-series of rotor angle and speed (fault duration: 425 ms)
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Fig. 48: instable time-series of rotor angle and speed (fault duration: 426 ms)

7.6.3 Measures to increase transient stability

To improve transient stability, it is necessary to provide sufficient reserves for slowing down
or accelerating the rotor again after clearance of the fault. This can be achieved by maximizing
the quotient of breakdown power and turbine power. Several options are available:

e High magnitude of U’, that means high excitation, resulting in small transient rotor
angles o'

e Small grid impedance, which can be achieved with meshing or series compensation,
similar to small-signal stability

e Selective and fast fault clearance

e Fast turbine governors

e Damping of rotor oscillations using additional controllers, so called Power System
Stabilizers (PSS)
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8 Modelling of shunt and series faults

In the electric power system, the occurrence of faults is inevitable. All possible sorts of faults
must therefore be considered during grid planning and grid operation to not endanger assets,
people and system security, if a fault occurs. In general, faults are divided into series and shunt
faults:

e Shunt faults are faults that occur orthogonal to the power flow direction. They establish
a conducting connection between phase and ground or between other phases (and
potentially with ground). The perturbation and the intensity of the fault current depends
on the constellation of the fault. If the fault current is high, it is called short-circuit
current.

e Series faults are faults that occur in the direction of the power flow. They may be an
increase of impedance up to a total interruption of the line. On the other hand, short-
circuiting of an aspired interruption, e.g. a breaker that has not opened correctly, is seen
as a series fault as well.

Shunt and series faults can occur balanced or unbalanced, as single or multiple parallel faults
in any arbitrary constellation and combination and at different positions in the grid. This is
typical for some sorts of faults. E.g. a single-line-to-ground fault causes the voltage to increase
by the factor of J3 inthe healthy lines of ungrounded grids which may lead to secondary short-
circuits if the insulation cannot bear the voltage rise.

To calculate unbalanced faults, usually, the fault constellation, which is known in natural
coordinates, needs to be transformed into symmetrical components. Therefore, the network
descriptions of the positive, negative and zero sequence system need to be interconnected at the
fault location depending on the fault. This gets very complicated in case of several parallel
faults. Using the fault matrix method described here, the interconnection of these systems can
be done in an easy and systematic way by integrating the fault conditions into the current
equation of the grid. Thereby, the fault matrix method is independent from the actually used
coordination systems and works with natural coordinates as well as every modal transformation.
Besides, it offers some additional advantages:

e All matrices that need to be inverted are not singular.

e The number of nodes and terminals stays constant and is does not depend on the faults
or the switching state.

e Shunt faults without an impedance (Y — o) and series faults without an admittance
(Z — ) can be expressed and integrated without any numerical assumptions.

8.1 Fault conditions

The relations between voltages and currents at the fault location are called fault conditions.
Independent from the used coordinate system, in a three-phase grid, there are always three dual
voltage and current constraints which combine to the fault conditions. They can therefore be
expressed using a characteristic 3x3 fault matrix F.
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8.1.1 Fault conditions in natural coordinates

To model shunt faults, at the respective location fault impedances Z are included into the line
diagram. They carry the fault current | .
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Fig. 49: modelling of shunt faults

In the healthy phases, the fault current is zero. In the faulty phases, the impedance creates a new
mesh. The sum of voltages in this mesh must be zero. These two conditions can be expressed
using the above-mentioned fault matrix.

I_F,a

Fl 1y, |=0 8.1)
I_F,c
and
L—Ja ;F,a lF,a
(E-F7)||U, |- Zey ey | |=0 (8.2)
L—Jc ;F,C lF,c

Series faults are modelled by including fault admittances Y into the line diagram at the
respective location bearing a series fault voltage U ..

I !F,a

Fig. 50: modelling of series faults

In the healthy phases, the fault voltage is zero. On the other hand, in faulty lines, the fault
admittance forms an additional fork, at which the sums of currents must be zero, according to
Kirchhoff’s first law. Both constraints can again be combined using the fault matrix.




8.1 Fault conditions 83
L_JF,a
F QF’b =0 (8.3)
LiF,c
and
—a XF a LlF,a
(E-FT)[| 1, Yoo Ury | |=0 (8.4)
LAY XF c LiF,c
Table 5: overview of fault matrices
shunt faults series faults fault matrix
I_F,a =0 liF,a =0 i 0 0_
no shunt fault | Lrp =0 no series fault L_JF,b =0 1 0
IF,CZO QF,C 0 L 0 1_
U a _;F,a IFa 0 la _!F,a LlF,a =0 _0 0 0_
ingle ph ingle ph
f(l)ngr(e): ;;1 dase | iy =0 Zlnfne phase u by = 0 01 0
u
s . =0 P Uy, =0 0 0 1]
IF,a =0 LlF,aZO i 0 0—
t h t t h
V:(:)u}I)ldaseS (0] U b= ;F,b lF’b =0 OW(e)np ases lb _XF’b QF,b =0 0 0
s Uc_;F,c IFc_O P lc _XF,C LlF,c:O L 0 0_
U a _;F,a I_F,a =0 la _XF,a liF,a =0 _0 0 0—
s U c _;F,c I—F,c =0 P lc _XF,C liF,c =0 L 0 O_
lF a = 0
two phase | ’ I o 1 0 0]
short-circuit TEb ¥ IFe =
without (QC —Zg, |_F,c) 0 0
ground ~(Uy=Zpy Lpy) =0 ) )
Tea+ gy +1p. =0
three phase (Qb —Zgp I_F,b) 1
short-circuit —(U ~Ze s ) ~0 00 0
without - s 00 0
ground (Qc _;F,C I_F,c)
_(L_Ja _;F,a lF,a) =0
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The fault matrices for the so-called main-faults are given in Table 5. Main fault means, that the
fault is symmetric to the reference phase a. All other faults, e.g. a single line to ground fault in
phase b, is modelled in the exact same way by setting the ones and zeros accordingly in the
fault matrix.

Shunt and series faults are modelled using the same fault matrices. This fact is called duality.
Only for the two-phase and three-phase short-circuit without ground contact there is no
corresponding series fault.

If there is no fault, the fault matrix is the unity matrix. In this case in eq. (8.1) the fault currents
are directly set to zero. In. eq. (8.2) the first term is zero. So, no artificial, numerically high
impedances need to be assumed to approximate at faultless condition. The same is true for series
faults. There is no need to include artificial admittances to approximate a connection with no
impedance or an interruption with no admittance.

8.1.2 Fault conditions in symmetrical components

The description of faults in symmetrical components is done analogously to the natural
coordinates. The system matrix Z , the fault matrix F and the fault impedances and admittances
are transformed into the modal reference frame using the transformation matrix T . This
results in the fault matrix

Foc=Tox F T (8.5)
The fault matrix is now complex-valued. With
Lisk = IS{ Zp Tk (8.6)
and
Yrsk =Tsk Yr Isk (8.7)

the shunt and series faults are calculated in the exact same way as in natural coordinates. Shunt
faults are calculated according to

lF,l

ESK |_F,2 =0
Iro
(8.8)
L_Jl ;F,l I_F,l
(E —ngi) le - ;F,l lF,z =0
U, Zro || Lo

and series faults respectively
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Up,
Esx Qp,z =0
Uro
(8.9)
L XF,I Up,
T
(E - ESK) I |- Yo liF,z =0
1o XF,O Uro
where
T | T+ T S\ 4
Esk = (ISK F ISK) =T F (ISK) =T F Tek (3.10)

Obviously, it is advantageous to model the fault in natural coordinates first and then transform
it into symmetrical components for calculation. The resulting phase voltages and currents are
obtained by retransformation afterwards.

The shown procedure can be used in the same way with any modal component system.

8.2 General description of shunt faults

All sequence systems need to be considered to calculate unbalanced faults. Therefore, the
current equation system is extended to calculate the negative and zero sequence system as well
resulting in 3x3 submatrices instead of the scalars known from the positive sequence system.

Yoo Yo o Y| Uk iK,l—‘
Yor Yo, o= X2,||—| QK,z—l: [P
: : P : (8.11)
Yor Yoo o X,Z,..J !K,nJ iK,nJ
Y xk Ug = g
with
Yii
Yij= Yoi] (8.12)
Yoij
In case of a fault, the nodal currents are superposed by the fault currents.
Yo Yoo oo Yy g i, [y
Yor Yo, 0 Ky QK,z—L [ N Ip,
: P Pl : : (8.13)
Yor Yoo o Yoo U | Lika ] |ien
Yk Ug = g + g

According to Table 5 for each node a fault matrix and a fault impedance matrix can be defined.
All nodal fault matrices are combined to a single fault matrix F ; which has block-diagonal
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form. Thus, it is possible to model as many parallel faults as wanted without additional effort.
According to eq. (8.8), the fault currents

Fxi g,

=F ;=0 (8.14)
EK,n iF,n

and the voltages are calculated

E-Fy Ui —Zp, gy
| ' :(E_EE*)(QK_;F iF):O (8.15)

E-Fih|[Ykn—ZEn e |
Eq. (8.13) is solved for the fault current. The result is inserted into eq. (8.14) and eq. (8.15).
Ex (XKK !K‘iK)ZO (8.16)
and
(E-EX) (U —Zs (Yo Ug ~ig ) =0 (8.17)
Reformulation of eq. (8.17) results in
(E-F&)(E-Z Yo )t +(E-FX) Zp iy =0 (8.18)

Eq. (8.18) 1s a voltage constraint. It can be multiplied with Y . to formally convert it into a
current constraint. After that, it is set equal to the current constraint from eq. (8.16).

e (Vi U —i) =Y ((E-EX)(E-Zp Yo )ug +(E-EX)Zr i) (819)
Using the auxiliary matrix
Fu =Y (E-FX)Z (8.20)

eq. (8.19) can be solved and reformulated into the well-known current equation form

(EK Yk —Ykk (E _EFZ)—'—!KK EE) Ug = (EK +EFZ)1K

Yk r Ug = Ik F

(8.21)

The fault matrix method obviously modifies the nodal bus admittance matrix and the right-
hand-side of the current equation. The voltages of the faulty system can now be calculated by
solving eq. (8.21) for U . Afterwards the fault currents can be obtained.

Ip =Yg Ug —lg (8.22)
During the entire process, the size of the equation has not changed.

If all faults do not have an impedance, Z, and F ,; are zero matrices. In this case, eq. (8.21)
can be simplified to

(EK Yk Yk +Ykk E?)HK =Fyig (8.23)




8.3 General description of series faults 87

If there is no fault, F will be the unity matrix and E —EE* a zero matrix, respectively.
Eq. (8.23) will be the original current equation again.

8.3 General description of series faults

Series faults are changes to the physical behavior of assets. Thus, they are not directly modelled
using the nodal current equation system but the terminal current equation system instead. Again,
the fault matrix method aims at calculating interruptions without artificial inner nodes or
terminals which would change the size of the equation systems depending on the number and
type of the fault. For the reason of highest relevance, modelling of series faults is demonstrated
using quadrupoles here. It is nevertheless suitable for any type of equipment and applied in the
exact same way.

Similar to the shunt faults, the terminal current equation system needs to be extended by the
negative and zero sequence system resulting in 3x3 submatrices instead of scalars.

{EA}:{XAA !AB}{HA} (8.24)
[ Ypa Ygg || Us

At each terminal, a series fault can be modelled as a series voltage which superposes to the

|:1A,F:| _ |:XAA !AB:| GHA } B {!F,A}J (8.25)
[ Yoo Yas ([ Up Urg .

For both terminals, the voltage constraints

F u
{—T’A } {—F’A} =0 (8.26)
Erp ]| Ues

AT o T

are defined. For the entire grid this results in

terminal voltages

and current constraints

it =Y (up—up) (8.28)
with the fault constraints
Erup=0 (8.29)
and
(E-ET)(ir-Yrup)=0 (8.30)

Similar to the shunt faults, as a first step, the faulty, dependent values — in the case the terminal
currents — are eliminated by inserting eq. (8.28) into eq. (8.30).

(E—E?)(!T HT_(!T +!F)HF):O (8.31)
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Using the auxiliary matrix
Yu=Yr+Y; (8.32)

the voltage constraints are again formally converted into current constraints which are set equal
to the current constraints given in eq. (8.31).

(E-ET)(Yrur—Yuu)=Y, Eryp (8.33)

Eq. (8.33) is now brought into the well-known current equation form

(Yo BT Yy +Yy Er)up =(E-E7 )Y uy (8.34)

and can be solved for U, if there is no shunt-free equipment being completely disconnected
from the grid.

Up = (XH _E? Yu+Yy Er )_1 (E —E? )!T Up =Zpp YrUp (8.35)

Eq. (8.35) is inserted into the terminal current equation system which results in
ip= (XT =Y Ly XT)QT =Y 1 Ur (3.36)

The fault matrix method only modifies the coefficients of Y and therefore the physical
behavior of the assets according to the faults. Due to Y ¢ and Y 1 have the same size and
terminal enumeration, Y p can be used to calculate a bus admittance matrix Y iy r which then
can be used to model shunt faults. Thus, multiple parallel shunt and series faults can be
calculated simultaneously.

As described, eq. (8.35) cannot be solved, if an asset with no shunt elements is completely
disconnected from the grid i.e. switched off. This would result in a non-invertible, singular
admittance matrix due to for the disconnected part of the grid, no reference voltage can be
given. Due to in this case, independent from the terminal voltages, such an asset cannot transmit
any currents via its terminals, it is not necessary to model such behavior using the fault matrix
method. Instead, it is faster and more convenient to directly set the corresponding coefficients
of Y 1 to zero in eq. (8.36).

Dipoles are often equipped with an inner current source. The fault matrix method can also be
applied to such active equipment in the described manner, if the source current is considered in
the equations. Eq. (8.35) is extended to

Up =Ly (\LT Uy +iq) (8.37)
which results in a modified eq. (8.36)

i :(E -Yr ZFF)(!T Uy +iq) =Y rr Ur +iq,F (8.38)
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8.4 Balanced faults

In a balanced system, the negative and zero sequence system are passive and can be neglected.
It is sufficient to only calculate the positive sequence system. This can be applied to balanced
faults as well, i.e. three phase short-circuits with or without ground contact and three-phase
series faults. In these cases, the fault matrix is reduced to a scalar which only represents the
positive sequence system. A healthy state is therefore represented by a “1”” and the faulty state
is indicted by a “0”. The rest of the method works as described. So, all balanced short-circuits
and series faults can be easily modeled.

To model balanced admittance-free switching operations, the method can be even further
simplified. It is not necessary to perform all of the above-mentioned steps. Instead, the resulting
admittance matrices can be directly given, which increases calculation speed. The resulting
coefficients of the terminal admittance matrix of quadrupoles is given in Table 6.

Table 6: admittance matrices for switching operations

fault : ..
A B . lines two-winding transformers
matrix
(107 | [Ya+Yy —Yyu [ Yar Y
closed | closed * 2
10 1] || —Yu Yp+Yu —7 Yga |Z| Ygs
r 7 r 2
1 0] !A + XB Xc 0 YAA_YAB_'_XABXBB _!AB 0
closed | open 0 0 Yp+Ye B B Y gg
- L 0 0] 0 0
o o 1 |[o 0
00 Y, Y YoaYax—-Y:
open | closed 0 1 0 Yp+-—=2=C 0 |£|2 Y op =Yy +ZBATAA RS:TN
- L YA +1c | XAA

0 0

[0 o] [0 O 0 0
open | open




